{"title":"Unveiling the influence of zirconium on the corrosion behavior of Fe-36Ni Invar alloy","authors":"Qi Wang , Yanwu Dong , Zhouhua Jiang , Zilin Yin , Yuning Wu , Haibiao Qing","doi":"10.1016/j.intermet.2024.108519","DOIUrl":null,"url":null,"abstract":"<div><div>The influence of zirconium (Zr) on the corrosion resistance of Fe-36Ni Invar alloy in a 3.5 wt% NaCl solution was systematically investigated. Results indicated that adding Zr promoted the formation of Zr-bearing intermetallic compounds (Ni<sub>7</sub>Zr<sub>2</sub> and Ni<sub>2</sub>Zr). The phases suppressed the grain growth and numerous dislocations were enriched around the Ni-Zr phases. Unfortunately, the incorporation of Zr into Fe-36Ni Invar alloy impaired corrosion resistance. The marked disparity in Volta potential between the Ni-Zr phases and the matrix signified the existence of micro-galvanic coupling, which caused the matrix to dissolve preferentially. Furthermore, the matrix around the Ni-Zr phases possessed high dislocation density, promoting the emergence of local galvanic corrosion. The introduction of Zr also decreased the protectiveness of the passive film, which was ascribed to the reduction of the thickness of the passive film and the beneficial oxide content in the passive film.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"175 ","pages":"Article 108519"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979524003388","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The influence of zirconium (Zr) on the corrosion resistance of Fe-36Ni Invar alloy in a 3.5 wt% NaCl solution was systematically investigated. Results indicated that adding Zr promoted the formation of Zr-bearing intermetallic compounds (Ni7Zr2 and Ni2Zr). The phases suppressed the grain growth and numerous dislocations were enriched around the Ni-Zr phases. Unfortunately, the incorporation of Zr into Fe-36Ni Invar alloy impaired corrosion resistance. The marked disparity in Volta potential between the Ni-Zr phases and the matrix signified the existence of micro-galvanic coupling, which caused the matrix to dissolve preferentially. Furthermore, the matrix around the Ni-Zr phases possessed high dislocation density, promoting the emergence of local galvanic corrosion. The introduction of Zr also decreased the protectiveness of the passive film, which was ascribed to the reduction of the thickness of the passive film and the beneficial oxide content in the passive film.
期刊介绍:
This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys.
The journal reports the science and engineering of metallic materials in the following aspects:
Theories and experiments which address the relationship between property and structure in all length scales.
Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations.
Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties.
Technological applications resulting from the understanding of property-structure relationship in materials.
Novel and cutting-edge results warranting rapid communication.
The journal also publishes special issues on selected topics and overviews by invitation only.