Design and fabrication of photonic crystal structures by single pulse laser interference lithography

IF 4.6 2区 物理与天体物理 Q1 OPTICS
Zhiheng Lin, Yun-Ran Wang, Yaoxun Wang, Mark Hopkinson
{"title":"Design and fabrication of photonic crystal structures by single pulse laser interference lithography","authors":"Zhiheng Lin,&nbsp;Yun-Ran Wang,&nbsp;Yaoxun Wang,&nbsp;Mark Hopkinson","doi":"10.1016/j.optlastec.2024.111951","DOIUrl":null,"url":null,"abstract":"<div><div>Photonic crystal (PhC) structures formed by periodic surface nanostructuring have emerged as pivotal elements for controlling light-matter interactions. One important application is reducing losses due to the high surface reflectivity of semiconductor optoelectronic devices, such as enhancing light absorption in photovoltaic cells or improving light extraction in light-emitting diodes (LEDs). Although various methods for fabricating such structures have been documented, the utilization of single pulse laser interference lithography (LIL) using commercial photoresist and its subsequent effective use as an etch mask has not been previously reported. Rapid exposure of photoresists with single nanosecond pulses offers benefits for high throughput patterning and reduces the requirement for a stable optical platform. We have successfully employed single pulse LIL to fabricate antireflective PhC structures on GaAs substrates using a commercial photoresist. Exposure is performed with single 7 ns 355 nm pulses of relatively low energy (&lt;10 mJ). High-quality nanohole arrays of pitch of approximately 365 nm are fabricated and depths up to 400 nm have been etched using inductively coupled plasma (ICP) through the exposed photoresist mask. Reflectivity analyses confirmed that these structures reduce the average reflectance of the GaAs to below 5 % across the 450 nm to 700 nm visible wavelength range. The fabrication of PhC structures using this approach has potential for low-cost wafer-level patterning to provide improved light extraction in LEDs and enhanced light trapping in solar cells.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"181 ","pages":"Article 111951"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224014099","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Photonic crystal (PhC) structures formed by periodic surface nanostructuring have emerged as pivotal elements for controlling light-matter interactions. One important application is reducing losses due to the high surface reflectivity of semiconductor optoelectronic devices, such as enhancing light absorption in photovoltaic cells or improving light extraction in light-emitting diodes (LEDs). Although various methods for fabricating such structures have been documented, the utilization of single pulse laser interference lithography (LIL) using commercial photoresist and its subsequent effective use as an etch mask has not been previously reported. Rapid exposure of photoresists with single nanosecond pulses offers benefits for high throughput patterning and reduces the requirement for a stable optical platform. We have successfully employed single pulse LIL to fabricate antireflective PhC structures on GaAs substrates using a commercial photoresist. Exposure is performed with single 7 ns 355 nm pulses of relatively low energy (<10 mJ). High-quality nanohole arrays of pitch of approximately 365 nm are fabricated and depths up to 400 nm have been etched using inductively coupled plasma (ICP) through the exposed photoresist mask. Reflectivity analyses confirmed that these structures reduce the average reflectance of the GaAs to below 5 % across the 450 nm to 700 nm visible wavelength range. The fabrication of PhC structures using this approach has potential for low-cost wafer-level patterning to provide improved light extraction in LEDs and enhanced light trapping in solar cells.
利用单脉冲激光干涉光刻技术设计和制造光子晶体结构
通过周期性表面纳米结构形成的光子晶体(PhC)结构已成为控制光物质相互作用的关键元素。其中一个重要应用是减少半导体光电设备因表面反射率高而造成的损耗,如增强光伏电池的光吸收或改善发光二极管(LED)的光提取。虽然已有各种方法用于制造此类结构,但使用商用光刻胶进行单脉冲激光干涉光刻(LIL),并随后将其有效用作蚀刻掩模的方法尚未见报道。用单纳秒脉冲对光刻胶进行快速曝光,有利于实现高通量图案化,并降低了对稳定光学平台的要求。我们成功地利用单脉冲 LIL 在砷化镓基底上使用商用光刻胶制造了抗反射 PhC 结构。曝光采用能量相对较低(10 mJ)的 7 ns 355 nm 单脉冲。通过曝光的光刻胶掩膜,使用电感耦合等离子体 (ICP) 制作了间距约为 365 nm 的高质量纳米孔阵列,蚀刻深度可达 400 nm。反射率分析证实,在 450 纳米到 700 纳米的可见光波长范围内,这些结构可将砷化镓的平均反射率降至 5% 以下。利用这种方法制造 PhC 结构具有低成本晶圆级图案化的潜力,可改善 LED 的光萃取和增强太阳能电池的光捕获。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.50
自引率
10.00%
发文量
1060
审稿时长
3.4 months
期刊介绍: Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication. The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas: •development in all types of lasers •developments in optoelectronic devices and photonics •developments in new photonics and optical concepts •developments in conventional optics, optical instruments and components •techniques of optical metrology, including interferometry and optical fibre sensors •LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow •applications of lasers to materials processing, optical NDT display (including holography) and optical communication •research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume) •developments in optical computing and optical information processing •developments in new optical materials •developments in new optical characterization methods and techniques •developments in quantum optics •developments in light assisted micro and nanofabrication methods and techniques •developments in nanophotonics and biophotonics •developments in imaging processing and systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信