Wuyang Zhao , Yash Jain , Florian Müller-Plathe , Paul Steinmann , Sebastian Pfaller
{"title":"Investigating fracture mechanisms in glassy polymers using coupled particle-continuum simulations","authors":"Wuyang Zhao , Yash Jain , Florian Müller-Plathe , Paul Steinmann , Sebastian Pfaller","doi":"10.1016/j.jmps.2024.105884","DOIUrl":null,"url":null,"abstract":"<div><div>We study the fracture behavior of glassy polymers using a multiscale simulation method that integrates a molecular dynamics (MD) system within a continuum domain. By employing a nonlinear viscoelastic constitutive model in the continuum domain, the MD system undergoes non-uniform deformation with flexible boundaries through interaction with the surrounding continuum. Systems with pre-defined double cracks are subjected to tensile stretch under various geometric constraints and bond breakage criteria. The simulation results show that geometric constraints primarily affect deformation behavior at small strains, but their influence diminishes at larger strains. In the stage of fracture, increased deformation correlates with a narrowing distribution of microscopic structures at molecular scales, such as bond length. This distribution converges across different systems just before fracture, irrespective of ultimate stress, fracture strain, bond breakage criteria, and geometric constraints. This convergence suggests that the distribution of microscopic structures is a fundamental property linked to the fracture behavior of glassy polymers.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"193 ","pages":"Article 105884"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624003508","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We study the fracture behavior of glassy polymers using a multiscale simulation method that integrates a molecular dynamics (MD) system within a continuum domain. By employing a nonlinear viscoelastic constitutive model in the continuum domain, the MD system undergoes non-uniform deformation with flexible boundaries through interaction with the surrounding continuum. Systems with pre-defined double cracks are subjected to tensile stretch under various geometric constraints and bond breakage criteria. The simulation results show that geometric constraints primarily affect deformation behavior at small strains, but their influence diminishes at larger strains. In the stage of fracture, increased deformation correlates with a narrowing distribution of microscopic structures at molecular scales, such as bond length. This distribution converges across different systems just before fracture, irrespective of ultimate stress, fracture strain, bond breakage criteria, and geometric constraints. This convergence suggests that the distribution of microscopic structures is a fundamental property linked to the fracture behavior of glassy polymers.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.