Yi Cui, Haojie Wen, Jinyong Tang, Jiawen Chen, Juan Zhou, Minghua Hou, Xiaohan Rong, Yuanzhao Lan, Qiong Wu
{"title":"ELAVL1 regulates glycolysis in nasopharyngeal carcinoma cells through the HMGB3/β-catenin axis.","authors":"Yi Cui, Haojie Wen, Jinyong Tang, Jiawen Chen, Juan Zhou, Minghua Hou, Xiaohan Rong, Yuanzhao Lan, Qiong Wu","doi":"10.1186/s10020-024-00941-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The role of ELAVL1 in the progression of various tumors has been demonstrated. Our research aims to investigate how ELAVL1 controls the glycolytic process in nasopharyngeal carcinoma cells through the HMGB3/β-catenin pathway.</p><p><strong>Methods: </strong>The expression of ELAVL1 was detected in clinical tumor samples and nasopharyngeal carcinoma cell lines. A subcutaneous tumor model was established in nude mice to investigate the role of ELAVL1 in tumor progression. The relationship between HMGB3 and ELAVL1 was validated by RNA pull down and RIP assays. TOPFlash/FOPFlash reporter assay was used to detect β-catenin activity. Assay kits were utilized to measure glucose consumption, lactate production, and G6PD activity in nasopharyngeal carcinoma cells. Western blot was conducted to detect the expression of glycolysis-related proteins. The glycolytic capacity was analyzed through extracellular acidification rate (ECAR).</p><p><strong>Results: </strong>In both clinical samples and nasopharyngeal carcinoma cell lines, the expression levels of ELAVL1 mRNA and protein were found to be upregulated. Knockdown of ELAVL1 significantly inhibited the in vivo proliferation of nasopharyngeal carcinoma and suppressed the glycolytic capacity of nasopharyngeal carcinoma cells. ELAVL1 interacts with HMGB3, leading to an increase in the stability of HMGB3 mRNA. Overexpression of HMGB3 elevated the reduced β-catenin activity caused by sh-ELAVL1 and reversed the inhibitory effect of sh-ELAVL1 on cellular glycolytic capacity. Treatment with β-catenin inhibitor (FH535) effectively suppressed the promotion of glycolytic capacity induced by HMGB3 overexpression.</p><p><strong>Conclusions: </strong>ELAVL1 promotes glycolysis in nasopharyngeal carcinoma cells by interacting with HMGB3 to stabilize HMGB3 mRNA, thereby activating β-catenin pathway. Therefore, targeting the ELAVL1-HMGB3-β-catenin axis has the potential to be a novel approach for treating nasopharyngeal carcinoma.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"30 1","pages":"172"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468264/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-024-00941-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The role of ELAVL1 in the progression of various tumors has been demonstrated. Our research aims to investigate how ELAVL1 controls the glycolytic process in nasopharyngeal carcinoma cells through the HMGB3/β-catenin pathway.
Methods: The expression of ELAVL1 was detected in clinical tumor samples and nasopharyngeal carcinoma cell lines. A subcutaneous tumor model was established in nude mice to investigate the role of ELAVL1 in tumor progression. The relationship between HMGB3 and ELAVL1 was validated by RNA pull down and RIP assays. TOPFlash/FOPFlash reporter assay was used to detect β-catenin activity. Assay kits were utilized to measure glucose consumption, lactate production, and G6PD activity in nasopharyngeal carcinoma cells. Western blot was conducted to detect the expression of glycolysis-related proteins. The glycolytic capacity was analyzed through extracellular acidification rate (ECAR).
Results: In both clinical samples and nasopharyngeal carcinoma cell lines, the expression levels of ELAVL1 mRNA and protein were found to be upregulated. Knockdown of ELAVL1 significantly inhibited the in vivo proliferation of nasopharyngeal carcinoma and suppressed the glycolytic capacity of nasopharyngeal carcinoma cells. ELAVL1 interacts with HMGB3, leading to an increase in the stability of HMGB3 mRNA. Overexpression of HMGB3 elevated the reduced β-catenin activity caused by sh-ELAVL1 and reversed the inhibitory effect of sh-ELAVL1 on cellular glycolytic capacity. Treatment with β-catenin inhibitor (FH535) effectively suppressed the promotion of glycolytic capacity induced by HMGB3 overexpression.
Conclusions: ELAVL1 promotes glycolysis in nasopharyngeal carcinoma cells by interacting with HMGB3 to stabilize HMGB3 mRNA, thereby activating β-catenin pathway. Therefore, targeting the ELAVL1-HMGB3-β-catenin axis has the potential to be a novel approach for treating nasopharyngeal carcinoma.
期刊介绍:
Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.