{"title":"Prediction of puncturing events through LSTM for multilayer tissue.","authors":"Bulbul Behera, M Felix Orlando, R S Anand","doi":"10.1088/2057-1976/ad844c","DOIUrl":null,"url":null,"abstract":"<p><p>Recognizing penetration events in multilayer tissue is critical for many biomedical engineering applications, including surgical procedures and medical diagnostics. This paper presents a unique method for detecting penetration events in multilayer tissue using Long Short-Term Memory (LSTM) networks. LSTM networks, a form of recurrent neural network (RNN), excel at analyzing sequential data because of their ability to hold long-term dependencies. The suggested method collects time-series insertion force data from sensors integrated from a 1-DOF prismatic robot as it penetrates tissue. This data is then processed by the LSTM network, which has been trained to recognize patterns indicating penetration events through various tissue layers. The effectiveness of this approach is validated through experimental setups, demonstrating high accuracy and reliability in detecting penetration events. This technique offers significant improvements over traditional methods, providing a non-invasive, real-time solution that enhances the precision and safety of medical procedures involving multilayer tissue interaction.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad844c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Recognizing penetration events in multilayer tissue is critical for many biomedical engineering applications, including surgical procedures and medical diagnostics. This paper presents a unique method for detecting penetration events in multilayer tissue using Long Short-Term Memory (LSTM) networks. LSTM networks, a form of recurrent neural network (RNN), excel at analyzing sequential data because of their ability to hold long-term dependencies. The suggested method collects time-series insertion force data from sensors integrated from a 1-DOF prismatic robot as it penetrates tissue. This data is then processed by the LSTM network, which has been trained to recognize patterns indicating penetration events through various tissue layers. The effectiveness of this approach is validated through experimental setups, demonstrating high accuracy and reliability in detecting penetration events. This technique offers significant improvements over traditional methods, providing a non-invasive, real-time solution that enhances the precision and safety of medical procedures involving multilayer tissue interaction.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.