Deepfake Detection: A Comprehensive Survey from the Reliability Perspective

IF 23.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Tianyi Wang, Xin Liao, Kam Pui Chow, Xiaodong Lin, Yinglong Wang
{"title":"Deepfake Detection: A Comprehensive Survey from the Reliability Perspective","authors":"Tianyi Wang, Xin Liao, Kam Pui Chow, Xiaodong Lin, Yinglong Wang","doi":"10.1145/3699710","DOIUrl":null,"url":null,"abstract":"The mushroomed Deepfake synthetic materials circulated on the internet have raised a profound social impact on politicians, celebrities, and individuals worldwide. In this survey, we provide a thorough review of the existing Deepfake detection studies from the reliability perspective. We identify three reliability-oriented research challenges in the current Deepfake detection domain: transferability, interpretability, and robustness. Moreover, while solutions have been frequently addressed regarding the three challenges, the general reliability of a detection model has been barely considered, leading to the lack of reliable evidence in real-life usages and even for prosecutions on Deepfake-related cases in court. We, therefore, introduce a model reliability study metric using statistical random sampling knowledge and the publicly available benchmark datasets to review the reliability of the existing detection models on arbitrary Deepfake candidate suspects. Case studies are further executed to justify the real-life Deepfake cases including different groups of victims with the help of the reliably qualified detection models as reviewed in this survey. Reviews and experiments on the existing approaches provide informative discussions and future research directions for Deepfake detection.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"23 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3699710","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The mushroomed Deepfake synthetic materials circulated on the internet have raised a profound social impact on politicians, celebrities, and individuals worldwide. In this survey, we provide a thorough review of the existing Deepfake detection studies from the reliability perspective. We identify three reliability-oriented research challenges in the current Deepfake detection domain: transferability, interpretability, and robustness. Moreover, while solutions have been frequently addressed regarding the three challenges, the general reliability of a detection model has been barely considered, leading to the lack of reliable evidence in real-life usages and even for prosecutions on Deepfake-related cases in court. We, therefore, introduce a model reliability study metric using statistical random sampling knowledge and the publicly available benchmark datasets to review the reliability of the existing detection models on arbitrary Deepfake candidate suspects. Case studies are further executed to justify the real-life Deepfake cases including different groups of victims with the help of the reliably qualified detection models as reviewed in this survey. Reviews and experiments on the existing approaches provide informative discussions and future research directions for Deepfake detection.
深度伪造检测:从可靠性角度进行全面调查
互联网上如雨后春笋般流传的Deepfake合成材料对全世界的政治家、名人和个人产生了深远的社会影响。在这份调查报告中,我们从可靠性的角度对现有的 Deepfake 检测研究进行了全面回顾。我们指出了当前 Deepfake 检测领域以可靠性为导向的三个研究挑战:可转移性、可解释性和鲁棒性。此外,虽然针对这三个挑战的解决方案屡见不鲜,但检测模型的一般可靠性却几乎没有被考虑过,这导致在实际应用中甚至在法庭起诉 Deepfake 相关案件时都缺乏可靠的证据。因此,我们引入了模型可靠性研究指标,利用统计随机抽样知识和公开可用的基准数据集来审查现有检测模型对任意 Deepfake 候选嫌疑人的可靠性。我们还进一步开展了案例研究,借助本调查中审查的可靠合格的检测模型,对现实生活中的 Deepfake 案件(包括不同的受害者群体)进行论证。对现有方法的评论和实验为 Deepfake 检测提供了翔实的讨论和未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信