{"title":"A Robust Core-Shell Nanofabric with Personal Protection, Health Monitoring and Physical Comfort for Smart Sportswear","authors":"Peiqi Wu, Jianfeng Gu, Xue Liu, Yichen Ren, Xiaoqian Mi, Weiqing Zhan, Xinmin Zhang, Huihui Wang, Xinyi Ji, Zhao Yue, Jiajie Liang","doi":"10.1002/adma.202411131","DOIUrl":null,"url":null,"abstract":"<p>Smart textiles with a high level of personal protection, health monitoring, physical comfort, and wearing durability are highly demanded in clothing for harsh application scenarios, such as modern sportswear. However, seamlessly integrating such a smart clothing system has been a long-sought but challenging goal. Herein, based on coaxial electrospinning techniques, a smart non-woven textile (Smart-NT) integrated with high impact resistance is developed, multisensory functions, and radiative cooling effects. This Smart-NT is comprised of core-shell nanofibers with an ionic conductive polymer sheath and an impact-stiffening polymer core. The soft smart textile, with a thickness of only 800 µm, can attenuate over 60% of impact force, sense pressure stimulus with sensitivity up to 201.5 kPa<sup>−1</sup>, achieve temperature sensing resolution of 0.1 °C, and reduce skin temperature by ≈17 °C under a solar intensity of 1 kW m<sup>−2</sup>. In addition, the stretchable Smart-NT is highly durable and robust, retaining its multifunction features over 10 000 bending and multiple washing cycles. Finally, application scenarios are demonstrated for real-time health monitoring, body protection, and physical comfort of smart sportswear based on Smart-NT for outdoor sports. The strategy opens a new avenue for seamless integration of smart clothing systems.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"36 47","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202411131","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Smart textiles with a high level of personal protection, health monitoring, physical comfort, and wearing durability are highly demanded in clothing for harsh application scenarios, such as modern sportswear. However, seamlessly integrating such a smart clothing system has been a long-sought but challenging goal. Herein, based on coaxial electrospinning techniques, a smart non-woven textile (Smart-NT) integrated with high impact resistance is developed, multisensory functions, and radiative cooling effects. This Smart-NT is comprised of core-shell nanofibers with an ionic conductive polymer sheath and an impact-stiffening polymer core. The soft smart textile, with a thickness of only 800 µm, can attenuate over 60% of impact force, sense pressure stimulus with sensitivity up to 201.5 kPa−1, achieve temperature sensing resolution of 0.1 °C, and reduce skin temperature by ≈17 °C under a solar intensity of 1 kW m−2. In addition, the stretchable Smart-NT is highly durable and robust, retaining its multifunction features over 10 000 bending and multiple washing cycles. Finally, application scenarios are demonstrated for real-time health monitoring, body protection, and physical comfort of smart sportswear based on Smart-NT for outdoor sports. The strategy opens a new avenue for seamless integration of smart clothing systems.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.