{"title":"Evaluation of oxidative stress, biochemical parameters and in silico markers in different pea accessions in response to drought stress.","authors":"Anamika Dutta, Raghvendra Saxena, Vinay Dwivedi, Baskar Venkidasamy, Raghvendra Kumar Mishra","doi":"10.1007/s00299-024-03311-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>ARG6 and ARG10 pea accessions exhibited better tolerance to drought by keeping drought-associated attributes stable and higher, that is, stable chlorophyll content, high antioxidant activity, and the presence of polymorphic bands with stress-responsive EST-SSR markers. Each year, a significant portion of crops is lost due to various abiotic stresses, and even pea (Pisum sativum) crop growth and yield are severely affected by the challenges posed by drought stress. Drought is a critical factor that limits crop growth and development, and its impact is exacerbated by changes in the magnitude of climatic conditions. Drought induces oxidative stress in plants, leading to the accumulation of high concentrations of reactive oxygen species that damage cell structures and vital functioning of cells. The primary objective was to identify stress-tolerant plants by evaluating different morphological and biochemical attributes, such as biomass, chlorophyll content, relative water content, ascorbate peroxidase (APX), superoxide dismutase (SOD), and DPPH scavenging activity, as well as protein, proline, and phenolic content. Our study revealed that pea accessions (ARG6 and ARG10) were more resilient to drought stress as their chlorophyll, relative water, protein, and proline contents increased under drought conditions. Antioxidant enzymes, such as SOD, APX, and DPPH activities, also increased under drought stress in ARG10 and ARG6, suggesting that these accessions could bolster the antioxidant defense system in response to drought stress. Based on putative (cellular, biological, and metabolic) functions, ten EST-SSR primers were selected for the amplification study. Three EST-SSR primers, AUMP06_110, AUMP18_300, and AUMP31_250, were used for ARG6 and ARG10. Based on the correlation between the presence or absence of specific EST-SSR alleles, various physiological and morphological traits, and DPPH scavenging activity, both ARG10 and ARG6 demonstrated resistance to drought stress.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"43 10","pages":"251"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-024-03311-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Key message: ARG6 and ARG10 pea accessions exhibited better tolerance to drought by keeping drought-associated attributes stable and higher, that is, stable chlorophyll content, high antioxidant activity, and the presence of polymorphic bands with stress-responsive EST-SSR markers. Each year, a significant portion of crops is lost due to various abiotic stresses, and even pea (Pisum sativum) crop growth and yield are severely affected by the challenges posed by drought stress. Drought is a critical factor that limits crop growth and development, and its impact is exacerbated by changes in the magnitude of climatic conditions. Drought induces oxidative stress in plants, leading to the accumulation of high concentrations of reactive oxygen species that damage cell structures and vital functioning of cells. The primary objective was to identify stress-tolerant plants by evaluating different morphological and biochemical attributes, such as biomass, chlorophyll content, relative water content, ascorbate peroxidase (APX), superoxide dismutase (SOD), and DPPH scavenging activity, as well as protein, proline, and phenolic content. Our study revealed that pea accessions (ARG6 and ARG10) were more resilient to drought stress as their chlorophyll, relative water, protein, and proline contents increased under drought conditions. Antioxidant enzymes, such as SOD, APX, and DPPH activities, also increased under drought stress in ARG10 and ARG6, suggesting that these accessions could bolster the antioxidant defense system in response to drought stress. Based on putative (cellular, biological, and metabolic) functions, ten EST-SSR primers were selected for the amplification study. Three EST-SSR primers, AUMP06_110, AUMP18_300, and AUMP31_250, were used for ARG6 and ARG10. Based on the correlation between the presence or absence of specific EST-SSR alleles, various physiological and morphological traits, and DPPH scavenging activity, both ARG10 and ARG6 demonstrated resistance to drought stress.
期刊介绍:
Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as:
- genomics and genetics
- metabolism
- cell biology
- abiotic and biotic stress
- phytopathology
- gene transfer and expression
- molecular pharming
- systems biology
- nanobiotechnology
- genome editing
- phenomics and synthetic biology
The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.