{"title":"Palladium-Catalyzed branch hydroaminocarbonylation of terminal alkynes with nitroarenes","authors":"Zhiping Yin , Weiheng Yuan , Chenwei Liu , Xiaowen Qin , Tiefeng Xu , Xiao-Feng Wu","doi":"10.1016/j.jcat.2024.115781","DOIUrl":null,"url":null,"abstract":"<div><div>We report an innovative palladium-catalyzed hydroaminocarbonylation approach that efficiently converts nitroarenes and terminal alkynes into α,β-unsaturated amides. This method, with broad substrate compatibility, delivers 32% to 87% yields with excellent regioselectivity. Central to the effectiveness of this reaction are the bipyridine ligand and salicylic acid, which play pivotal roles in optimizing both selectivity and product yield. Mechanistic experiments revealed that arylamine serves as a critical intermediate in the overall reaction, highlighting a unique pathway in the catalytic cycle. In contrast to conventional procedures, this protocol employs diverse nitroarenes and Mo(CO)<sub>6</sub> as direct nitrogen and solid carbonyl sources, streamlining the process and enhancing safety by reducing the reliance on hazardous CO gas.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"439 ","pages":"Article 115781"},"PeriodicalIF":6.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021951724004949","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We report an innovative palladium-catalyzed hydroaminocarbonylation approach that efficiently converts nitroarenes and terminal alkynes into α,β-unsaturated amides. This method, with broad substrate compatibility, delivers 32% to 87% yields with excellent regioselectivity. Central to the effectiveness of this reaction are the bipyridine ligand and salicylic acid, which play pivotal roles in optimizing both selectivity and product yield. Mechanistic experiments revealed that arylamine serves as a critical intermediate in the overall reaction, highlighting a unique pathway in the catalytic cycle. In contrast to conventional procedures, this protocol employs diverse nitroarenes and Mo(CO)6 as direct nitrogen and solid carbonyl sources, streamlining the process and enhancing safety by reducing the reliance on hazardous CO gas.
期刊介绍:
The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes.
The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods.
The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.