Formalizing the law of diminishing returns in metabolic networks using an electrical analogy.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Royal Society Open Science Pub Date : 2024-10-02 eCollection Date: 2024-10-01 DOI:10.1098/rsos.240165
Marianyela Petrizzelli, Charlotte Coton, Dominique de Vienne
{"title":"Formalizing the law of diminishing returns in metabolic networks using an electrical analogy.","authors":"Marianyela Petrizzelli, Charlotte Coton, Dominique de Vienne","doi":"10.1098/rsos.240165","DOIUrl":null,"url":null,"abstract":"<p><p>The way biological systems respond to changes in parameter values caused by mutations is a key issue in evolution and quantitative genetics, as it affects fundamental aspects such as adaptation, selective neutrality, robustness, optimality, evolutionary equilibria, etc. We address this question using the enzyme-flux relationship in a metabolic network as a model of the genotype-phenotype relationship. The lack of a suitable mathematical tool from biochemical theory to investigate this relationship led us to use an analogy between electrical circuits and metabolic networks with uni-uni reactions. We show that a behaviour of diminishing returns, which is commonly observed at various phenotypic levels, is inevitable, irrespective of the complexity of the system. We also present a possible generalization to metabolic networks with both uni-uni and bi-bi reactions.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"11 10","pages":"240165"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444769/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.240165","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The way biological systems respond to changes in parameter values caused by mutations is a key issue in evolution and quantitative genetics, as it affects fundamental aspects such as adaptation, selective neutrality, robustness, optimality, evolutionary equilibria, etc. We address this question using the enzyme-flux relationship in a metabolic network as a model of the genotype-phenotype relationship. The lack of a suitable mathematical tool from biochemical theory to investigate this relationship led us to use an analogy between electrical circuits and metabolic networks with uni-uni reactions. We show that a behaviour of diminishing returns, which is commonly observed at various phenotypic levels, is inevitable, irrespective of the complexity of the system. We also present a possible generalization to metabolic networks with both uni-uni and bi-bi reactions.

利用电气类比法,将新陈代谢网络中的收益递减规律正规化。
生物系统如何应对突变引起的参数值变化是进化和数量遗传学的一个关键问题,因为它影响到适应、选择中性、稳健性、最优性、进化平衡等基本方面。我们利用代谢网络中的酶通量关系作为基因型与表型关系的模型来解决这个问题。由于缺乏合适的生化理论数学工具来研究这种关系,我们将电路与单偶联反应的代谢网络进行类比。我们证明,无论系统的复杂程度如何,在各种表型水平上普遍观察到的收益递减行为是不可避免的。我们还提出了一种可能的推广方法,可用于具有单-单反应和双-双反应的代谢网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Royal Society Open Science
Royal Society Open Science Multidisciplinary-Multidisciplinary
CiteScore
6.00
自引率
0.00%
发文量
508
审稿时长
14 weeks
期刊介绍: Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review. The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信