Quantum Multiple Eigenvalue Gaussian filtered Search: an efficient and versatile quantum phase estimation method

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2024-10-02 DOI:10.22331/q-2024-10-02-1487
Zhiyan Ding, Haoya Li, Lin Lin, HongKang Ni, Lexing Ying, Ruizhe Zhang
{"title":"Quantum Multiple Eigenvalue Gaussian filtered Search: an efficient and versatile quantum phase estimation method","authors":"Zhiyan Ding, Haoya Li, Lin Lin, HongKang Ni, Lexing Ying, Ruizhe Zhang","doi":"10.22331/q-2024-10-02-1487","DOIUrl":null,"url":null,"abstract":"Quantum phase estimation is one of the most powerful quantum primitives. This work proposes a new approach for the problem of multiple eigenvalue estimation: Quantum Multiple Eigenvalue Gaussian filtered Search (QMEGS). QMEGS leverages the Hadamard test circuit structure and only requires simple classical postprocessing. QMEGS is the first algorithm to simultaneously satisfy the following two properties: (1) It can achieve the Heisenberg-limited scaling without relying on any spectral gap assumption. (2) With a positive energy gap and additional assumptions on the initial state, QMEGS can estimate all dominant eigenvalues to $\\epsilon$ accuracy utilizing a significantly reduced circuit depth compared to the standard quantum phase estimation algorithm. In the most favorable scenario, the maximal runtime can be reduced to as low as $\\log(1/\\epsilon)$. This implies that QMEGS serves as an efficient and versatile approach, achieving the best-known results for both gapped and gapless systems. Numerical results validate the efficiency of our proposed algorithm in various regimes.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"23 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-10-02-1487","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum phase estimation is one of the most powerful quantum primitives. This work proposes a new approach for the problem of multiple eigenvalue estimation: Quantum Multiple Eigenvalue Gaussian filtered Search (QMEGS). QMEGS leverages the Hadamard test circuit structure and only requires simple classical postprocessing. QMEGS is the first algorithm to simultaneously satisfy the following two properties: (1) It can achieve the Heisenberg-limited scaling without relying on any spectral gap assumption. (2) With a positive energy gap and additional assumptions on the initial state, QMEGS can estimate all dominant eigenvalues to $\epsilon$ accuracy utilizing a significantly reduced circuit depth compared to the standard quantum phase estimation algorithm. In the most favorable scenario, the maximal runtime can be reduced to as low as $\log(1/\epsilon)$. This implies that QMEGS serves as an efficient and versatile approach, achieving the best-known results for both gapped and gapless systems. Numerical results validate the efficiency of our proposed algorithm in various regimes.
量子多特征值高斯滤波搜索:一种高效通用的量子相位估算方法
量子相位估计是最强大的量子基元之一。这项工作针对多特征值估计问题提出了一种新方法:量子多特征值高斯滤波搜索(QMEGS)。QMEGS 利用哈达玛测试电路结构,只需要简单的经典后处理。QMEGS 是第一种同时满足以下两个特性的算法:(1)它可以实现海森堡极限缩放,而无需依赖任何谱隙假设。(2) 与标准量子相位估计算法相比,在有正能量间隙和初始状态额外假设的情况下,QMEGS 可以利用显著减少的电路深度,将所有主特征值估计到 $\epsilon$ 的精度。在最有利的情况下,最大运行时间可以减少到 $\log(1/\epsilon)$。这意味着 QMEGS 是一种高效、多用途的方法,可以在有间隙和无间隙系统中实现已知的最佳结果。数值结果验证了我们提出的算法在各种情况下的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信