Metabolomics reveals a key role of salicylic acid in embryo abortion underlying interspecific hybridization between Hydrangea macrophylla and H. arborescens.
Jing Feng, Shuangshuang Chen, Huijie Chen, Linjian Dai, Xiangyu Qi, Muhammad Zulfiqar Ahmad, Kai Gao, Shuai Qiu, Yuyan Jin, Yanming Deng
{"title":"Metabolomics reveals a key role of salicylic acid in embryo abortion underlying interspecific hybridization between Hydrangea macrophylla and H. arborescens.","authors":"Jing Feng, Shuangshuang Chen, Huijie Chen, Linjian Dai, Xiangyu Qi, Muhammad Zulfiqar Ahmad, Kai Gao, Shuai Qiu, Yuyan Jin, Yanming Deng","doi":"10.1007/s00299-024-03341-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Embryo abortion at the heart-shaped stage is the main reason for the failure of interspecific hybridization of hydrangea, and salicylic acid plays a key role during embryo abortion. Difficulties in obtaining seeds from interspecific hybridization between Hydrangea macrophylla and H. arborescens had severely restricted the process of breeding new hydrangea varieties. To clarify the cause of reproductive barriers, an interspecific hybridization was made between H. macrophylla 'Endless Summer' (female parent) and H. arborescens 'Annabelle' (male parent). The results showed that both parents' floral organs developed normally, 'Annabelle' had high pollen viability (84.83% at 8 h after incubation), and the pollen tube could enter into the ovule of 'Endless Summer' at 72 h after pollination. Therefore, the pre-fertilization barrier was not the main reason for the failure of interspecific hybridization. However, observation of the embryo development by paraffin sections showed that the embryo was aborted at the heart-shaped stage. In addition, salicylic acid (SA) content was significantly higher (fourfold, P < 0.01) at 21 days after pollination (DAP) as compared to that of 17 DAP, which means SA may be closely correlated with embryo development. A total of 957 metabolites were detected, among which 78 were significantly different. During the embryo abortion, phenylpropanoids and polyketides were significantly down-regulated, while organic oxygen compounds were significantly up-regulated. Further analysis indicated that the metabolic pathway was enriched in the shikimic acid biosynthesis pathway, which suggests that more SA was synthesized. Taken together, it can be reasonably speculated that SA plays a key role leading to embryo abortion underlying the interspecific hybridization between Hydrangea macrophylla and H. arborescens. The result is helpful to direct the breeding of hydrangea through distant hybridization.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"43 10","pages":"248"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-024-03341-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Key message: Embryo abortion at the heart-shaped stage is the main reason for the failure of interspecific hybridization of hydrangea, and salicylic acid plays a key role during embryo abortion. Difficulties in obtaining seeds from interspecific hybridization between Hydrangea macrophylla and H. arborescens had severely restricted the process of breeding new hydrangea varieties. To clarify the cause of reproductive barriers, an interspecific hybridization was made between H. macrophylla 'Endless Summer' (female parent) and H. arborescens 'Annabelle' (male parent). The results showed that both parents' floral organs developed normally, 'Annabelle' had high pollen viability (84.83% at 8 h after incubation), and the pollen tube could enter into the ovule of 'Endless Summer' at 72 h after pollination. Therefore, the pre-fertilization barrier was not the main reason for the failure of interspecific hybridization. However, observation of the embryo development by paraffin sections showed that the embryo was aborted at the heart-shaped stage. In addition, salicylic acid (SA) content was significantly higher (fourfold, P < 0.01) at 21 days after pollination (DAP) as compared to that of 17 DAP, which means SA may be closely correlated with embryo development. A total of 957 metabolites were detected, among which 78 were significantly different. During the embryo abortion, phenylpropanoids and polyketides were significantly down-regulated, while organic oxygen compounds were significantly up-regulated. Further analysis indicated that the metabolic pathway was enriched in the shikimic acid biosynthesis pathway, which suggests that more SA was synthesized. Taken together, it can be reasonably speculated that SA plays a key role leading to embryo abortion underlying the interspecific hybridization between Hydrangea macrophylla and H. arborescens. The result is helpful to direct the breeding of hydrangea through distant hybridization.
期刊介绍:
Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as:
- genomics and genetics
- metabolism
- cell biology
- abiotic and biotic stress
- phytopathology
- gene transfer and expression
- molecular pharming
- systems biology
- nanobiotechnology
- genome editing
- phenomics and synthetic biology
The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.