Scalable video transformer for full-frame video prediction

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhan Li, Feng Liu
{"title":"Scalable video transformer for full-frame video prediction","authors":"Zhan Li,&nbsp;Feng Liu","doi":"10.1016/j.cviu.2024.104166","DOIUrl":null,"url":null,"abstract":"<div><div>Vision Transformers (ViTs) have shown success in many low-level computer vision tasks. However, existing ViT models are limited by their high computation and memory cost when generating high-resolution videos for tasks like video prediction. This paper presents a scalable video transformer for full-frame video predication. Specifically, we design a backbone transformer block for our video transformer. This transformer block decouples the temporal and channel features to reduce the computation cost when processing large-scale spatial–temporal video features. We use transposed attention to focus on the channel dimension instead of the spatial window to further reduce the computation cost. We also design a Global Shifted Multi-Dconv Head Transposed Attention module (GSMDTA) for our transformer block. This module is built upon two key ideas. First, we design a depth shift module to better incorporate the cross-channel or temporal information from video features. Second, we introduce a global query mechanism to capture global information to handle large motion for video prediction. This new transformer block enables our video transformer to predict a full frame from multiple past frames at the resolution of 1024 × 512 with 12 GB VRAM. Experiments on various video prediction benchmarks demonstrate that our method with only RGB input outperforms state-of-the-art methods that require additional data, like segmentation maps and optical flows. Our method exceeds the state-of-the-art RGB-only methods by a large margin (1.2 dB) in PSNR. Our method is also faster than state-of-the-art video prediction transformers.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"249 ","pages":"Article 104166"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224002479","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Vision Transformers (ViTs) have shown success in many low-level computer vision tasks. However, existing ViT models are limited by their high computation and memory cost when generating high-resolution videos for tasks like video prediction. This paper presents a scalable video transformer for full-frame video predication. Specifically, we design a backbone transformer block for our video transformer. This transformer block decouples the temporal and channel features to reduce the computation cost when processing large-scale spatial–temporal video features. We use transposed attention to focus on the channel dimension instead of the spatial window to further reduce the computation cost. We also design a Global Shifted Multi-Dconv Head Transposed Attention module (GSMDTA) for our transformer block. This module is built upon two key ideas. First, we design a depth shift module to better incorporate the cross-channel or temporal information from video features. Second, we introduce a global query mechanism to capture global information to handle large motion for video prediction. This new transformer block enables our video transformer to predict a full frame from multiple past frames at the resolution of 1024 × 512 with 12 GB VRAM. Experiments on various video prediction benchmarks demonstrate that our method with only RGB input outperforms state-of-the-art methods that require additional data, like segmentation maps and optical flows. Our method exceeds the state-of-the-art RGB-only methods by a large margin (1.2 dB) in PSNR. Our method is also faster than state-of-the-art video prediction transformers.
用于全帧视频预测的可扩展视频变换器
视觉变换器(ViT)在许多低级计算机视觉任务中都取得了成功。然而,在为视频预测等任务生成高分辨率视频时,现有的 ViT 模型受限于其较高的计算和内存成本。本文提出了一种用于全帧视频预测的可扩展视频变换器。具体来说,我们为视频转换器设计了一个骨干转换器块。在处理大规模时空视频特征时,该转换器块将时间特征和通道特征分离开来,从而降低了计算成本。我们使用转置注意力来关注信道维度,而不是空间窗口,从而进一步降低计算成本。我们还为转换器模块设计了全局偏移多视角转置注意力模块(GSMDTA)。该模块基于两个关键理念。首先,我们设计了一个深度偏移模块,以更好地整合视频特征中的跨信道或时间信息。其次,我们引入了全局查询机制,以捕捉全局信息来处理视频预测中的大运动。这个新的转换器模块使我们的视频转换器能够在 1024 × 512 分辨率和 12 GB VRAM 的条件下,从多个过去的帧中预测一个完整的帧。在各种视频预测基准上进行的实验表明,我们的方法在仅使用 RGB 输入的情况下,优于需要额外数据(如分割图和光流)的先进方法。我们的方法在 PSNR 方面大大超过了最先进的纯 RGB 方法(1.2 dB)。我们的方法也比最先进的视频预测变换器更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Vision and Image Understanding
Computer Vision and Image Understanding 工程技术-工程:电子与电气
CiteScore
7.80
自引率
4.40%
发文量
112
审稿时长
79 days
期刊介绍: The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views. Research Areas Include: • Theory • Early vision • Data structures and representations • Shape • Range • Motion • Matching and recognition • Architecture and languages • Vision systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信