Controlled Vapor–Liquid–Solid Growth of Long and Remarkably Thin Pb1–xSnxTe Nanowires with Strain-Tunable Ferroelectric Phase Transition

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
T. X. Zhang, B. Samanta, J. Wang, A. B. Georgescu, H. A. Fertig, S. X. Zhang
{"title":"Controlled Vapor–Liquid–Solid Growth of Long and Remarkably Thin Pb1–xSnxTe Nanowires with Strain-Tunable Ferroelectric Phase Transition","authors":"T. X. Zhang, B. Samanta, J. Wang, A. B. Georgescu, H. A. Fertig, S. X. Zhang","doi":"10.1021/acsami.4c11537","DOIUrl":null,"url":null,"abstract":"The Pb<sub>1–<i>x</i></sub>Sn<sub><i>x</i></sub>Te family of compounds possess a wide range of intriguing and useful physical properties, including topologically protected surface states, robust ferroelectricity, remarkable thermoelectric properties, and potential topological superconductivity. Compared to bulk crystals, one-dimensional (1D) nanowires (NWs) offer a unique platform to enhance the functional properties and enable new capabilities, e.g., to realize 1D Majorana zero modes for quantum computations. However, it has been challenging to achieve controlled synthesis of ultrathin Pb<sub>1–<i>x</i></sub>Sn<sub><i>x</i></sub>Te (0 ≤ <i>x</i> ≤ 1) nanowires in the truly 1D region. In this work, we report on a Au-catalyzed vapor–liquid–solid (VLS) growth of remarkably thin (20–30 nm) and sufficiently long (several to tens of micrometers) Pb<sub>1–<i>x</i></sub>Sn<sub><i>x</i></sub>Te nanowires of high single-crystalline quality in a controlled fashion. This controlled growth was achieved by enhancing the incorporation of Te into the Au catalyst particle to facilitate the precipitation of the Sn/Pb species and suppress the enlargement of the particle, which we identified as a major challenge for the growth of ultrathin nanowires. Our growth strategy can be easily extended to other compound and alloy nanowires, where the constituent elements have different incorporation rates into the catalyst particle. Furthermore, the growth of thin Pb<sub>1–<i>x</i></sub>Sn<sub><i>x</i></sub>Te nanowires enabled strain-dependent electrical transport measurements, which shows an enhancement of electrical resistance and ferroelectric transition temperature induced by uniaxial tensile strain along the nanowire axial direction, consistent with density functional theory calculations of the structural phase stability.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c11537","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Pb1–xSnxTe family of compounds possess a wide range of intriguing and useful physical properties, including topologically protected surface states, robust ferroelectricity, remarkable thermoelectric properties, and potential topological superconductivity. Compared to bulk crystals, one-dimensional (1D) nanowires (NWs) offer a unique platform to enhance the functional properties and enable new capabilities, e.g., to realize 1D Majorana zero modes for quantum computations. However, it has been challenging to achieve controlled synthesis of ultrathin Pb1–xSnxTe (0 ≤ x ≤ 1) nanowires in the truly 1D region. In this work, we report on a Au-catalyzed vapor–liquid–solid (VLS) growth of remarkably thin (20–30 nm) and sufficiently long (several to tens of micrometers) Pb1–xSnxTe nanowires of high single-crystalline quality in a controlled fashion. This controlled growth was achieved by enhancing the incorporation of Te into the Au catalyst particle to facilitate the precipitation of the Sn/Pb species and suppress the enlargement of the particle, which we identified as a major challenge for the growth of ultrathin nanowires. Our growth strategy can be easily extended to other compound and alloy nanowires, where the constituent elements have different incorporation rates into the catalyst particle. Furthermore, the growth of thin Pb1–xSnxTe nanowires enabled strain-dependent electrical transport measurements, which shows an enhancement of electrical resistance and ferroelectric transition temperature induced by uniaxial tensile strain along the nanowire axial direction, consistent with density functional theory calculations of the structural phase stability.

Abstract Image

具有应变可调铁电相变的超长超薄 Pb1-xSnxTe 纳米线的受控气液固生长
Pb1-xSnxTe 系列化合物具有各种有趣而有用的物理特性,包括拓扑保护表面态、稳健的铁电性、显著的热电特性和潜在的拓扑超导性。与块状晶体相比,一维(1D)纳米线(NWs)提供了一个独特的平台,可以增强功能特性并实现新的功能,例如实现用于量子计算的一维马约拉纳零模。然而,在真正的 1D 区域实现超细 Pb1-xSnxTe(0 ≤ x ≤ 1)纳米线的可控合成一直是个挑战。在这项工作中,我们报告了在金催化下,以可控方式生长出极细(20-30 纳米)和足够长(几微米到几十微米)的高单晶质量 Pb1-xSnxTe 纳米线的情况。这种可控生长是通过提高金催化剂颗粒中 Te 的掺入量来实现的,从而促进 Sn/Pb 物种的沉淀并抑制颗粒的增大,我们认为增大是超细纳米线生长所面临的主要挑战。我们的生长策略可以很容易地扩展到其他化合物和合金纳米线,其中的组成元素在催化剂颗粒中的掺入率各不相同。此外,Pb1-xSnxTe 纳米线的生长还实现了应变依赖性电传输测量,测量结果表明,沿纳米线轴向的单轴拉伸应变会提高电阻和铁电转换温度,这与结构相稳定性的密度泛函理论计算结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信