Nanoscale cold welding of glass

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2024-09-27 DOI:10.1016/j.matt.2024.09.004
Yunna Guo, Hantao Cui, Peng Jia, Zhangran Ye, Lei Deng, Hui Li, Baiyu Guo, Xuedong Zhang, Jie Huang, Yong Su, Jianyu Huang, Bin Wen, Yang Lu, Liqiang Zhang
{"title":"Nanoscale cold welding of glass","authors":"Yunna Guo, Hantao Cui, Peng Jia, Zhangran Ye, Lei Deng, Hui Li, Baiyu Guo, Xuedong Zhang, Jie Huang, Yong Su, Jianyu Huang, Bin Wen, Yang Lu, Liqiang Zhang","doi":"10.1016/j.matt.2024.09.004","DOIUrl":null,"url":null,"abstract":"Bottom-up assembly and joining of silica nanoparticles to form complicated geometries up to three-dimensional (3D) glass structures are attractive for nanoscale optical, optoelectronics, etc. Most existing silica 3D printing techniques can only achieve submicron-level precision due to the optical limit of vat photopolymerization, which presents critical challenges for sub-100 nm printing. In this context, we introduce an electron-beam-assisted cold welding technique for nanoscale glass that is capable of achieving precision at the tens-of-nanometers scale. This method enables the direct fusion of two amorphous silica nanospheres within a few seconds while keeping the diameter smaller than 100 nm. Meanwhile, the strength, composition, and structure of the as-welded junctions appear the same as those of the pristine silica. Our approach would potentially allow ultra-high-resolution 3D bottom-up assembly and printing of silica nanostructures with ultimate resolution subject to the nanoparticle size only, which offers a new approach for additive manufacturing of nanoscale glass devices.","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2024.09.004","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bottom-up assembly and joining of silica nanoparticles to form complicated geometries up to three-dimensional (3D) glass structures are attractive for nanoscale optical, optoelectronics, etc. Most existing silica 3D printing techniques can only achieve submicron-level precision due to the optical limit of vat photopolymerization, which presents critical challenges for sub-100 nm printing. In this context, we introduce an electron-beam-assisted cold welding technique for nanoscale glass that is capable of achieving precision at the tens-of-nanometers scale. This method enables the direct fusion of two amorphous silica nanospheres within a few seconds while keeping the diameter smaller than 100 nm. Meanwhile, the strength, composition, and structure of the as-welded junctions appear the same as those of the pristine silica. Our approach would potentially allow ultra-high-resolution 3D bottom-up assembly and printing of silica nanostructures with ultimate resolution subject to the nanoparticle size only, which offers a new approach for additive manufacturing of nanoscale glass devices.

Abstract Image

纳米级玻璃冷焊
自下而上地组装和连接二氧化硅纳米颗粒以形成复杂几何形状的三维(3D)玻璃结构对纳米级光学、光电子学等领域具有吸引力。由于大桶光聚合的光学极限,大多数现有的二氧化硅三维打印技术只能达到亚微米级的精度,这对 100 纳米以下的打印提出了严峻的挑战。在此背景下,我们介绍了一种用于纳米级玻璃的电子束辅助冷焊接技术,该技术能够实现数十纳米级的精度。这种方法能在几秒钟内将两个无定形二氧化硅纳米球直接融合,同时保持直径小于 100 纳米。同时,焊接后结点的强度、成分和结构与原始二氧化硅相同。我们的方法有可能实现超高分辨率的三维自下而上组装和打印二氧化硅纳米结构,其最终分辨率仅受纳米粒子尺寸的限制,这为纳米级玻璃器件的增材制造提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信