Predicting Stability of Barley Straw-Derived Biochars Using Fourier Transform Infrared Spectroscopy

Monica A. McCall*, Jonathan S. Watson and Mark A. Sephton, 
{"title":"Predicting Stability of Barley Straw-Derived Biochars Using Fourier Transform Infrared Spectroscopy","authors":"Monica A. McCall*,&nbsp;Jonathan S. Watson and Mark A. Sephton,&nbsp;","doi":"10.1021/acssusresmgt.4c0014810.1021/acssusresmgt.4c00148","DOIUrl":null,"url":null,"abstract":"<p >In order to estimate the ability of biochar to sequester carbon as part of greenhouse gas removal technology, there is a need for rapid and accessible estimations of biochar stability. This study employs a novel method using Fourier transform infrared spectroscopy (FTIR) to predict common stability indicators, namely H:C and O:C molar ratios. Biochars derived from barley straw were produced at temperatures from 150 to 700 °C. The greatest compositional changes of the biochars occurred between 200 and 400 °C. All biochars produced at ≥400 °C achieved H:C &lt; 0.7 and O:C &lt; 0.4, indicative of biochars suitable for soil application. Regression models were built using FTIR data to predict H:C and O:C molar ratios. The H:C model produced a coefficient of determination (<i>R</i><sup>2</sup>) of 0.99, mean absolute percentage error (MAPE) 6.86%, and root-mean-square error (RMSE) of 0.07. The O:C model achieved the same <i>R</i><sup>2</sup> (0.99), MAPE of 9.02%, and RMSE of 0.03. Our results demonstrate that combining FTIR data with modeling is a promising rapid and accessible method for attaining biochar stability data.</p><p >This research investigates a new method to predict stability data of biochar, a material used in greenhouse gas removal and soil amendment.</p>","PeriodicalId":100015,"journal":{"name":"ACS Sustainable Resource Management","volume":"1 9","pages":"1975–1983 1975–1983"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acssusresmgt.4c00148","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Resource Management","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssusresmgt.4c00148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to estimate the ability of biochar to sequester carbon as part of greenhouse gas removal technology, there is a need for rapid and accessible estimations of biochar stability. This study employs a novel method using Fourier transform infrared spectroscopy (FTIR) to predict common stability indicators, namely H:C and O:C molar ratios. Biochars derived from barley straw were produced at temperatures from 150 to 700 °C. The greatest compositional changes of the biochars occurred between 200 and 400 °C. All biochars produced at ≥400 °C achieved H:C < 0.7 and O:C < 0.4, indicative of biochars suitable for soil application. Regression models were built using FTIR data to predict H:C and O:C molar ratios. The H:C model produced a coefficient of determination (R2) of 0.99, mean absolute percentage error (MAPE) 6.86%, and root-mean-square error (RMSE) of 0.07. The O:C model achieved the same R2 (0.99), MAPE of 9.02%, and RMSE of 0.03. Our results demonstrate that combining FTIR data with modeling is a promising rapid and accessible method for attaining biochar stability data.

This research investigates a new method to predict stability data of biochar, a material used in greenhouse gas removal and soil amendment.

利用傅立叶变换红外光谱预测大麦秸秆衍生生物秸秆的稳定性
为了估算生物炭作为温室气体清除技术的一部分固碳能力,需要对生物炭的稳定性进行快速、便捷的估算。本研究采用一种新方法,利用傅立叶变换红外光谱(FTIR)来预测常见的稳定性指标,即 H:C 和 O:C 摩尔比。从大麦秸秆中提取的生物炭是在 150 至 700 °C 的温度下生产的。生物炭的最大成分变化发生在 200 至 400 °C 之间。所有在≥400 °C下生产的生物酵素都达到了H:C <0.7和O:C <0.4,表明生物酵素适用于土壤应用。利用傅立叶变换红外光谱数据建立了回归模型,以预测 H:C 和 O:C 摩尔比。H:C 模型的判定系数 (R2) 为 0.99,平均绝对百分比误差 (MAPE) 为 6.86%,均方根误差 (RMSE) 为 0.07。O:C 模型的 R2 (0.99)、MAPE 为 9.02%、RMSE 为 0.03。我们的研究结果表明,将傅立叶变换红外光谱数据与建模相结合是获得生物炭稳定性数据的一种快速、简便的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信