Techno-economic analysis of a hybrid energy system for electrification using an off-grid solar/biogas/battery system employing HOMER: A case study in Vietnam

IF 6.9 2区 环境科学与生态学 Q1 ENGINEERING, CHEMICAL
Van Giao Nguyen, Prabhakar Sharma, Bhaskor Jyoti Bora, Thi Minh Tu Bui, Cristina Efremov, Minh Ho Tran, Jerzy Kowalski, Sameh M. Osman, Dao Nam Cao, Van Huong Dong
{"title":"Techno-economic analysis of a hybrid energy system for electrification using an off-grid solar/biogas/battery system employing HOMER: A case study in Vietnam","authors":"Van Giao Nguyen, Prabhakar Sharma, Bhaskor Jyoti Bora, Thi Minh Tu Bui, Cristina Efremov, Minh Ho Tran, Jerzy Kowalski, Sameh M. Osman, Dao Nam Cao, Van Huong Dong","doi":"10.1016/j.psep.2024.09.046","DOIUrl":null,"url":null,"abstract":"The electrification of off-grid /island villages is a critical step towards improving the techno-economic circumstances of rural regions and the overall general growth of the country. However, consistent supply from a single source is not possible in these areas. Thus, a hybrid renewable energy system performs better in these conditions. The research challenge now is to identify the optimal combinations of HRES from the available resources in a specific village site that can supply the power demand sustainably and to determine whether this is a cost-effective option. The present work is an endeavour to develop a sustainable and dynamic energy demand-supply model using HOMER Pro energy software in a specified off-grid rural site in Vietnam. The research presents four unique configurations of a combined energy system for Vietnam's island settlements, incorporating biomass-based biogas facilities, photovoltaic panels, lithium-ion batteries, and converters. Homer Pro was used for optimization and design, focusing on key performance measures such as cost of energy, net present cost, initial cost, operating cost, renewable fraction, and carbon emissions. The best HES system layout includes a 100-kW biomass-based generator, 2.62 kW photovoltaic installation, 10 lithium-ion batteries, and a 6.31 kW converter, producing 100 % renewable energy. The system's low cost of energy ($0.48), and net present cost ($25,730.89) make it an economically viable alternative, while its low CO<ce:inf loc=\"post\">2</ce:inf> emissions demonstrate its commitment to reducing greenhouse gas emissions.","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.psep.2024.09.046","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The electrification of off-grid /island villages is a critical step towards improving the techno-economic circumstances of rural regions and the overall general growth of the country. However, consistent supply from a single source is not possible in these areas. Thus, a hybrid renewable energy system performs better in these conditions. The research challenge now is to identify the optimal combinations of HRES from the available resources in a specific village site that can supply the power demand sustainably and to determine whether this is a cost-effective option. The present work is an endeavour to develop a sustainable and dynamic energy demand-supply model using HOMER Pro energy software in a specified off-grid rural site in Vietnam. The research presents four unique configurations of a combined energy system for Vietnam's island settlements, incorporating biomass-based biogas facilities, photovoltaic panels, lithium-ion batteries, and converters. Homer Pro was used for optimization and design, focusing on key performance measures such as cost of energy, net present cost, initial cost, operating cost, renewable fraction, and carbon emissions. The best HES system layout includes a 100-kW biomass-based generator, 2.62 kW photovoltaic installation, 10 lithium-ion batteries, and a 6.31 kW converter, producing 100 % renewable energy. The system's low cost of energy ($0.48), and net present cost ($25,730.89) make it an economically viable alternative, while its low CO2 emissions demonstrate its commitment to reducing greenhouse gas emissions.
利用 HOMER 对使用离网太阳能/沼气/电池系统实现电气化的混合能源系统进行技术经济分析:越南案例研究
离网/岛屿村庄电气化是改善农村地区技术经济状况和国家整体发展的关键一步。然而,在这些地区不可能从单一来源持续供电。因此,混合可再生能源系统在这些条件下能发挥更好的作用。目前的研究挑战是如何从特定村落的可用资源中找出可持续满足电力需求的混合可再生能源系统的最佳组合,并确定这是否是一种具有成本效益的选择。本研究致力于在越南的一个特定离网农村地区,利用 HOMER Pro 能源软件开发一个可持续的动态能源供需模型。研究为越南的岛屿居住区提出了四种独特的组合能源系统配置,其中包括生物质沼气设施、光伏电池板、锂离子电池和转换器。Homer Pro 用于优化和设计,重点关注能源成本、净现值成本、初始成本、运营成本、可再生部分和碳排放等关键性能指标。最佳 HES 系统布局包括一个 100 千瓦的生物质发电机、2.62 千瓦的光伏装置、10 个锂离子电池和一个 6.31 千瓦的转换器,可产生 100% 的可再生能源。该系统的低能源成本(0.48 美元)和净现值成本(25,730.89 美元)使其成为经济上可行的替代方案,而其低二氧化碳排放量则证明了其对减少温室气体排放的承诺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Process Safety and Environmental Protection
Process Safety and Environmental Protection 环境科学-工程:化工
CiteScore
11.40
自引率
15.40%
发文量
929
审稿时长
8.0 months
期刊介绍: The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice. PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers. PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信