Advancements in Blind Source Separation for EEG Artifact Removal: A comparative analysis of Variational Mode Decomposition and Discrete Wavelet Transform approaches

IF 3.4 2区 物理与天体物理 Q1 ACOUSTICS
{"title":"Advancements in Blind Source Separation for EEG Artifact Removal: A comparative analysis of Variational Mode Decomposition and Discrete Wavelet Transform approaches","authors":"","doi":"10.1016/j.apacoust.2024.110300","DOIUrl":null,"url":null,"abstract":"<div><p>Electroencephalography (EEG) is a vital tool for elucidating cerebral processes; however, it is inherently vulnerable to physiological interference, including cardiac rhythm, ocular movement, and muscular activity. To guarantee the reliability of essential neuronal data, it is imperative to implement efficacious denoising methodologies. This study compares the efficacy of two advanced blind source separation (BSS) techniques applied to EEG signals: variational mode decomposition-based BSS (VMD-BSS) and discrete wavelet transform-based BSS (DWT-BSS). The efficacy of these methods is rigorously assessed using performance metrics such as the Euclidean Distance (ED) and the Spearman Correlation Coefficient (SCC), which evaluate the precision of signal reconstruction and the correlation between the original and denoised signals, respectively. The findings indicate that both methods yield robust results, with minimal Euclidean distances of 704.04 for VMD-BSS and 703.64 for DWT-BSS, and a strong correlation coefficient of 0.82. The results demonstrate the effectiveness of the proposed techniques in removing artifacts while preserving essential neural information in EEG recordings. Furthermore, the proposed techniques are benchmarked against previous studies, considering factors such as signal properties, computational complexity, frequency localization, and flexibility. These findings highlight the importance of customized parameter selection tailored to the specific characteristics of EEG datasets and research objectives.</p></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X24004511","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Electroencephalography (EEG) is a vital tool for elucidating cerebral processes; however, it is inherently vulnerable to physiological interference, including cardiac rhythm, ocular movement, and muscular activity. To guarantee the reliability of essential neuronal data, it is imperative to implement efficacious denoising methodologies. This study compares the efficacy of two advanced blind source separation (BSS) techniques applied to EEG signals: variational mode decomposition-based BSS (VMD-BSS) and discrete wavelet transform-based BSS (DWT-BSS). The efficacy of these methods is rigorously assessed using performance metrics such as the Euclidean Distance (ED) and the Spearman Correlation Coefficient (SCC), which evaluate the precision of signal reconstruction and the correlation between the original and denoised signals, respectively. The findings indicate that both methods yield robust results, with minimal Euclidean distances of 704.04 for VMD-BSS and 703.64 for DWT-BSS, and a strong correlation coefficient of 0.82. The results demonstrate the effectiveness of the proposed techniques in removing artifacts while preserving essential neural information in EEG recordings. Furthermore, the proposed techniques are benchmarked against previous studies, considering factors such as signal properties, computational complexity, frequency localization, and flexibility. These findings highlight the importance of customized parameter selection tailored to the specific characteristics of EEG datasets and research objectives.

用于消除脑电图伪影的盲源分离技术的进展:变异模式分解与离散小波变换方法的比较分析
脑电图(EEG)是阐明大脑过程的重要工具,但它本身容易受到生理干扰,包括心律、眼球运动和肌肉活动。为了保证重要神经元数据的可靠性,必须采用有效的去噪方法。本研究比较了两种先进的盲源分离(BSS)技术在脑电信号上的应用效果:基于变异模式分解的 BSS(VMD-BSS)和基于离散小波变换的 BSS(DWT-BSS)。使用欧氏距离(ED)和斯皮尔曼相关系数(SCC)等性能指标对这些方法的功效进行了严格评估,这些指标分别评估信号重建的精度以及原始信号和去噪信号之间的相关性。结果表明,这两种方法都能产生稳健的结果,VMD-BSS 的最小欧氏距离为 704.04,DWT-BSS 为 703.64,相关系数为 0.82。这些结果表明,所提出的技术能有效去除伪影,同时保留脑电图记录中的基本神经信息。此外,考虑到信号特性、计算复杂性、频率定位和灵活性等因素,还将所提出的技术与之前的研究进行了比较。这些发现凸显了根据脑电图数据集的具体特征和研究目标选择定制参数的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Acoustics
Applied Acoustics 物理-声学
CiteScore
7.40
自引率
11.80%
发文量
618
审稿时长
7.5 months
期刊介绍: Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense. Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems. Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信