Keqian Wu, He Zha, Tianhui Wu, Handeng Liu, Rui Peng, Ziyue Lin, Dan Lv, Xiaohui Liao, Yan Sun, Zheng Zhang
{"title":"Cytosolic Hmgb1 accumulation in mesangial cells aggravates diabetic kidney disease progression via NFκB signaling pathway","authors":"Keqian Wu, He Zha, Tianhui Wu, Handeng Liu, Rui Peng, Ziyue Lin, Dan Lv, Xiaohui Liao, Yan Sun, Zheng Zhang","doi":"10.1007/s00018-024-05433-7","DOIUrl":null,"url":null,"abstract":"<p>Diabetic kidney disease (DKD) is the predominant type of end-stage renal disease. Increasing evidence suggests thatglomerular mesangial cell (MC) inflammation is pivotal for cell proliferation and DKD progression. However, the exactmechanism of MC inflammation remains largely unknown. This study aims to elucidate the role of inflammatoryfactor high-mobility group box 1 (Hmgb1) in DKD. Inflammatory factors related to DKD progression are screened viaRNA sequencing (RNA-seq). In vivo and in vitro experiments, including db/db diabetic mice model, CCK-8 assay, EdUassay, flow cytometric analysis, Co-IP, FISH, qRT-PCR, western blot, single cell nuclear RNA sequencing (snRNA-seq),are performed to investigate the effects of Hmgb1 on the inflammatory behavior of MCs in DKD. Here, wedemonstrate that Hmgb1 is significantly upregulated in renal tissues of DKD mice and mesangial cells cultured withhigh glucose, and Hmgb1 cytopasmic accumulation promotes MC inflammation and proliferation. Mechanistically,Hmgb1 cytopasmic accumulation is two-way regulated by MC-specific cyto-lncRNA E130307A14Rik interaction andlactate-mediated acetylated and lactylated Hmgb1 nucleocytoplasmic translocation, and accelerates NFκB signalingpathway activation via directly binding to IκBα. Together, this work reveals the promoting role of Hmgb1 on MCinflammation and proliferation in DKD and helps expound the regulation of Hmgb1 cytopasmic accumulation in twoways. In particular, Hmgb1 may be a promising therapeutic target for DKD.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"103 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-024-05433-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic kidney disease (DKD) is the predominant type of end-stage renal disease. Increasing evidence suggests thatglomerular mesangial cell (MC) inflammation is pivotal for cell proliferation and DKD progression. However, the exactmechanism of MC inflammation remains largely unknown. This study aims to elucidate the role of inflammatoryfactor high-mobility group box 1 (Hmgb1) in DKD. Inflammatory factors related to DKD progression are screened viaRNA sequencing (RNA-seq). In vivo and in vitro experiments, including db/db diabetic mice model, CCK-8 assay, EdUassay, flow cytometric analysis, Co-IP, FISH, qRT-PCR, western blot, single cell nuclear RNA sequencing (snRNA-seq),are performed to investigate the effects of Hmgb1 on the inflammatory behavior of MCs in DKD. Here, wedemonstrate that Hmgb1 is significantly upregulated in renal tissues of DKD mice and mesangial cells cultured withhigh glucose, and Hmgb1 cytopasmic accumulation promotes MC inflammation and proliferation. Mechanistically,Hmgb1 cytopasmic accumulation is two-way regulated by MC-specific cyto-lncRNA E130307A14Rik interaction andlactate-mediated acetylated and lactylated Hmgb1 nucleocytoplasmic translocation, and accelerates NFκB signalingpathway activation via directly binding to IκBα. Together, this work reveals the promoting role of Hmgb1 on MCinflammation and proliferation in DKD and helps expound the regulation of Hmgb1 cytopasmic accumulation in twoways. In particular, Hmgb1 may be a promising therapeutic target for DKD.
期刊介绍:
Journal Name: Cellular and Molecular Life Sciences (CMLS)
Location: Basel, Switzerland
Focus:
Multidisciplinary journal
Publishes research articles, reviews, multi-author reviews, and visions & reflections articles
Coverage:
Latest aspects of biological and biomedical research
Areas include:
Biochemistry and molecular biology
Cell biology
Molecular and cellular aspects of biomedicine
Neuroscience
Pharmacology
Immunology
Additional Features:
Welcomes comments on any article published in CMLS
Accepts suggestions for topics to be covered