Sub-millikelvin-resolved superconducting nanowire single-photon detector operates with sub-pW infrared radiation power

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Qi Chen, Fei Zhou, Chen Wei, Yue Dai, Haiyong Gan, Labao Zhang, Hao Wang, Hang Yuan, Haochen Li, Jingrou Tan, Guojin Feng, Xuecou Tu, Xiaoqing Jia, Qingyuan Zhao, Lin Kang, Jian Chen, Peiheng Wu
{"title":"Sub-millikelvin-resolved superconducting nanowire single-photon detector operates with sub-pW infrared radiation power","authors":"Qi Chen, Fei Zhou, Chen Wei, Yue Dai, Haiyong Gan, Labao Zhang, Hao Wang, Hang Yuan, Haochen Li, Jingrou Tan, Guojin Feng, Xuecou Tu, Xiaoqing Jia, Qingyuan Zhao, Lin Kang, Jian Chen, Peiheng Wu","doi":"10.1093/nsr/nwae319","DOIUrl":null,"url":null,"abstract":"The noise equivalent temperature difference (NETD) indicates the minimum temperature difference resolvable by an infrared detector. The lower the NETD is, the better the sensor can register small temperature differences. In this work, we proposed a strategy to achieve a high temperature resolution using a superconducting nanowire single-photon detector (SNSPD) with ultrahigh sensitivity. We deduced the model for calculating the NETD of a photon-counting type detector and applied it to our SNSPD-based setup. Experimentally, we obtained a NETD as low as 0.65 mK, which is limited by the background radiation of the environment, and the required infrared radiation power is calculated to be less than 1 pW. Furthermore, the intrinsic NETD of this SNSPD is estimated to be less than 0.1 mK. This work demonstrated a sub-mK temperature resolution with the SNSPD, paving the way for future remote infrared thermal imaging with high temperature resolution.","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"46 1","pages":""},"PeriodicalIF":16.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae319","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The noise equivalent temperature difference (NETD) indicates the minimum temperature difference resolvable by an infrared detector. The lower the NETD is, the better the sensor can register small temperature differences. In this work, we proposed a strategy to achieve a high temperature resolution using a superconducting nanowire single-photon detector (SNSPD) with ultrahigh sensitivity. We deduced the model for calculating the NETD of a photon-counting type detector and applied it to our SNSPD-based setup. Experimentally, we obtained a NETD as low as 0.65 mK, which is limited by the background radiation of the environment, and the required infrared radiation power is calculated to be less than 1 pW. Furthermore, the intrinsic NETD of this SNSPD is estimated to be less than 0.1 mK. This work demonstrated a sub-mK temperature resolution with the SNSPD, paving the way for future remote infrared thermal imaging with high temperature resolution.
亚毫开尔文分辨超导纳米线单光子探测器可在亚波长红外辐射功率下工作
噪声等效温差(NETD)表示红外探测器可分辨的最小温差。噪声等效温差越小,传感器记录微小温差的能力就越强。在这项工作中,我们提出了一种利用具有超高灵敏度的超导纳米线单光子探测器(SNSPD)实现高温度分辨率的策略。我们推导出了计算光子计数型探测器 NETD 的模型,并将其应用于基于 SNSPD 的装置。通过实验,我们获得了低至 0.65 mK 的 NETD,这受到了环境本底辐射的限制,计算得出所需的红外辐射功率小于 1 pW。此外,这种 SNSPD 的固有 NETD 估计小于 0.1 mK。这项工作利用 SNSPD 展示了亚毫开氏度的温度分辨率,为未来具有高温度分辨率的远程红外热成像铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信