{"title":"Towards optimal spatio‐temporal decomposition of control‐related sum‐of‐squares programs","authors":"Vít Cibulka, Milan Korda, Tomáš Haniš","doi":"10.1002/rnc.7596","DOIUrl":null,"url":null,"abstract":"This paper presents a method for calculating the Region of Attraction (ROA) of nonlinear dynamical systems, both with and without control. The ROA is determined by solving a hierarchy of semidefinite programs (SDPs) defined on a splitting of the time and state space. Previous works demonstrated that this splitting could significantly enhance approximation accuracy, although the improvement was highly dependent on the ad‐hoc selection of split locations. In this work, we eliminate the need for this ad‐hoc selection by introducing an optimization‐based method that performs the splits through conic differentiation of the underlying semidefinite programming problem. We provide the differentiability conditions for the split ROA problem, prove the absence of a duality gap, and demonstrate the effectiveness of our method through numerical examples.","PeriodicalId":50291,"journal":{"name":"International Journal of Robust and Nonlinear Control","volume":"12 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robust and Nonlinear Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/rnc.7596","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a method for calculating the Region of Attraction (ROA) of nonlinear dynamical systems, both with and without control. The ROA is determined by solving a hierarchy of semidefinite programs (SDPs) defined on a splitting of the time and state space. Previous works demonstrated that this splitting could significantly enhance approximation accuracy, although the improvement was highly dependent on the ad‐hoc selection of split locations. In this work, we eliminate the need for this ad‐hoc selection by introducing an optimization‐based method that performs the splits through conic differentiation of the underlying semidefinite programming problem. We provide the differentiability conditions for the split ROA problem, prove the absence of a duality gap, and demonstrate the effectiveness of our method through numerical examples.
期刊介绍:
Papers that do not include an element of robust or nonlinear control and estimation theory will not be considered by the journal, and all papers will be expected to include significant novel content. The focus of the journal is on model based control design approaches rather than heuristic or rule based methods. Papers on neural networks will have to be of exceptional novelty to be considered for the journal.