{"title":"On the Kinetic Physical and Mathematical Metal Creep Theory Controlled by Thermally Activated Dislocation Sliding","authors":"V. M. Greshnov, R. I. Shaikhutdinov","doi":"10.1134/S0025654423602069","DOIUrl":null,"url":null,"abstract":"<p>The rationale for the prospects of using the physical and mathematical theory of metal creep in creep computations is carried out by a comparative analysis of the classical phenomenological and physical and mathematical metal creep theories. On the example of the description by both theories specific results of non-stationary creep experiments and analysis of the theories equations it is shown that implementing the physical kinetic equation for the actual structural parameter of the material, namely the scalar density of immobile dislocations, makes the physical and mathematical theory universal for solving non-stationary metal creep problems with multiaxial loading, when change, including abruptly, temperature, forces and loading rates.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"59 2","pages":"769 - 780"},"PeriodicalIF":0.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654423602069","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The rationale for the prospects of using the physical and mathematical theory of metal creep in creep computations is carried out by a comparative analysis of the classical phenomenological and physical and mathematical metal creep theories. On the example of the description by both theories specific results of non-stationary creep experiments and analysis of the theories equations it is shown that implementing the physical kinetic equation for the actual structural parameter of the material, namely the scalar density of immobile dislocations, makes the physical and mathematical theory universal for solving non-stationary metal creep problems with multiaxial loading, when change, including abruptly, temperature, forces and loading rates.
期刊介绍:
Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.