Tutorial: Defects in topological semimetals

IF 2.7 3区 物理与天体物理 Q2 PHYSICS, APPLIED
Kirstin Alberi, Chase Brooks, Ian Leahy, Stephan Lany
{"title":"Tutorial: Defects in topological semimetals","authors":"Kirstin Alberi, Chase Brooks, Ian Leahy, Stephan Lany","doi":"10.1063/5.0217533","DOIUrl":null,"url":null,"abstract":"Three-dimensional topological semimetals are a class of electronic materials in which their bulk and surface states contain linear band touching nodes near the Fermi level. Like semiconductors, their properties will be affected by point and extended defects in their crystal structures, although the extent to which defects and disorders influence topological semimetals may differ in key ways due to their unique electronic structures. In this Tutorial, we provide an overview of the defects in topological semimetals, covering both computational and experimental methods for exploring defect-property relationships. We also include a discussion on open questions that still need to be explored further.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"18 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0217533","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Three-dimensional topological semimetals are a class of electronic materials in which their bulk and surface states contain linear band touching nodes near the Fermi level. Like semiconductors, their properties will be affected by point and extended defects in their crystal structures, although the extent to which defects and disorders influence topological semimetals may differ in key ways due to their unique electronic structures. In this Tutorial, we provide an overview of the defects in topological semimetals, covering both computational and experimental methods for exploring defect-property relationships. We also include a discussion on open questions that still need to be explored further.
教程:拓扑半金属中的缺陷
三维拓扑半导体是一类电子材料,它们的体态和表面态包含费米级附近的线性带触节点。与半导体一样,它们的特性也会受到晶体结构中的点缺陷和扩展缺陷的影响,不过由于拓扑半金属独特的电子结构,缺陷和失调对它们的影响程度可能在关键方面有所不同。在本教程中,我们将概述拓扑半金属中的缺陷,包括探索缺陷-性质关系的计算和实验方法。我们还讨论了仍需进一步探索的开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Physics
Journal of Applied Physics 物理-物理:应用
CiteScore
5.40
自引率
9.40%
发文量
1534
审稿时长
2.3 months
期刊介绍: The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research. Topics covered in JAP are diverse and reflect the most current applied physics research, including: Dielectrics, ferroelectrics, and multiferroics- Electrical discharges, plasmas, and plasma-surface interactions- Emerging, interdisciplinary, and other fields of applied physics- Magnetism, spintronics, and superconductivity- Organic-Inorganic systems, including organic electronics- Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena- Physics of devices and sensors- Physics of materials, including electrical, thermal, mechanical and other properties- Physics of matter under extreme conditions- Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena- Physics of semiconductors- Soft matter, fluids, and biophysics- Thin films, interfaces, and surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信