Nested Perfect Arrays

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Verónica Becher;Olivier Carton
{"title":"Nested Perfect Arrays","authors":"Verónica Becher;Olivier Carton","doi":"10.1109/TIT.2024.3445122","DOIUrl":null,"url":null,"abstract":"We introduce two-dimensional periodic arrays that are a variant of the de Bruijn tori. We call them nested perfect arrays. Instead of asking that every array of a given size has exactly one occurrence, we partition the positions in congruence classes and we ask exactly one occurrence in each congruence class. We also ask that this property applies recursively to each of the subarrays. We give a method to construct nested perfect arrays based on Pascal triangle matrix modulo 2. For the two-symbol alphabet, and for n being a power of 2, we partition the positions of the arrays in \n<inline-formula> <tex-math>$n^{2}$ </tex-math></inline-formula>\n many congruence classes by taking the row number modulo n and the column number modulo n. We construct arrays where each possible \n<inline-formula> <tex-math>$n\\times n$ </tex-math></inline-formula>\n array occurs \n<inline-formula> <tex-math>$n^{2}$ </tex-math></inline-formula>\n times, once in each congruence class. Our method yields exponentially many (in \n<inline-formula> <tex-math>$n^{2}$ </tex-math></inline-formula>\n) different nested perfect arrays.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 10","pages":"7463-7471"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10638126/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce two-dimensional periodic arrays that are a variant of the de Bruijn tori. We call them nested perfect arrays. Instead of asking that every array of a given size has exactly one occurrence, we partition the positions in congruence classes and we ask exactly one occurrence in each congruence class. We also ask that this property applies recursively to each of the subarrays. We give a method to construct nested perfect arrays based on Pascal triangle matrix modulo 2. For the two-symbol alphabet, and for n being a power of 2, we partition the positions of the arrays in $n^{2}$ many congruence classes by taking the row number modulo n and the column number modulo n. We construct arrays where each possible $n\times n$ array occurs $n^{2}$ times, once in each congruence class. Our method yields exponentially many (in $n^{2}$ ) different nested perfect arrays.
嵌套完美数组
我们介绍的二维周期阵列是 de Bruijn tori 的一种变体。我们称之为嵌套完美数组。我们并不要求给定大小的每个数组都恰好有一次出现,而是将位置划分为全等类,并要求在每个全等类中都恰好有一次出现。我们还要求这一属性递归地适用于每个子数组。我们给出了一种基于帕斯卡三角形矩阵模 2 的嵌套完美数组构造方法。对于双符号字母表,并且 n 是 2 的幂次,我们通过取行数 modulo n 和列数 modulo n 将数组的位置划分为 $n^{2}$ 多个同类。我们构建的数组中,每个可能的 $n\times n$ 数组出现了 $n^{2}$次,在每个同类中出现一次。我们的方法会产生指数级数量(以 $n^{2}$ 为单位)的不同嵌套完美数组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信