An oscillating float-type piezoelectric-triboelectric-electromagnetic hybrid wave energy harvester used in fish-attracting lamp

IF 3.7 3区 材料科学 Q1 INSTRUMENTS & INSTRUMENTATION
Bowen Yang, Lipeng He, Zheming Liu, Linqiang Feng, Limin Zhang, Wei Fan
{"title":"An oscillating float-type piezoelectric-triboelectric-electromagnetic hybrid wave energy harvester used in fish-attracting lamp","authors":"Bowen Yang, Lipeng He, Zheming Liu, Linqiang Feng, Limin Zhang, Wei Fan","doi":"10.1088/1361-665x/ad6ab9","DOIUrl":null,"url":null,"abstract":"In this work, an oscillating float-type piezoelectric-triboelectric-electromagnetic hybrid wave energy harvester (PTE-HEH) used in fish-attracting lamp is proposed. It integrates three power generation methods and makes reasonable use of space, and the three power generation methods can complement each other. The theoretical analysis, simulation analysis, and experimental test of PTE-HEH are carried out. The variation trend and optimal parameters of each unit are found in the theoretical analysis and simulation. In the experiment, when the cantilever beam clamping length is 10 mm, the triboelectric mode of fluorinated ethylene propylene (FEP) film and copper foil independent triboelectric layer is adopted, and the number of magnets is 3, the output performance of PTE-HEH reaches the optimal state. When the external load resistance is 0.4 MΩ, the maximum output voltage is 69.52 V, and the maximum output power can reach 15.80 mW. It is greater than the sum of the output power of the three generators when they work alone. The power density can reach 25.99 W m<sup>−3</sup>. PTE-HEH can light 97 LEDs and power the temperature and humidity sensor. The PTE-HEH also makes the normal operation of fish-attracting lamp. The combination of PTE-HEH and fish-attracting lamp provides a new scheme for the subsequent development of self-powered fishing devices at sea.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":"59 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad6ab9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, an oscillating float-type piezoelectric-triboelectric-electromagnetic hybrid wave energy harvester (PTE-HEH) used in fish-attracting lamp is proposed. It integrates three power generation methods and makes reasonable use of space, and the three power generation methods can complement each other. The theoretical analysis, simulation analysis, and experimental test of PTE-HEH are carried out. The variation trend and optimal parameters of each unit are found in the theoretical analysis and simulation. In the experiment, when the cantilever beam clamping length is 10 mm, the triboelectric mode of fluorinated ethylene propylene (FEP) film and copper foil independent triboelectric layer is adopted, and the number of magnets is 3, the output performance of PTE-HEH reaches the optimal state. When the external load resistance is 0.4 MΩ, the maximum output voltage is 69.52 V, and the maximum output power can reach 15.80 mW. It is greater than the sum of the output power of the three generators when they work alone. The power density can reach 25.99 W m−3. PTE-HEH can light 97 LEDs and power the temperature and humidity sensor. The PTE-HEH also makes the normal operation of fish-attracting lamp. The combination of PTE-HEH and fish-attracting lamp provides a new scheme for the subsequent development of self-powered fishing devices at sea.
用于诱鱼灯的振荡浮子型压电-三电-电磁混合波能量收集器
本文提出了一种用于诱鱼灯的振荡浮子型压电-三电-电磁混合波能收集器(PTE-HEH)。它集成了三种发电方式,合理利用了空间,三种发电方式可互为补充。对 PTE-HEH 进行了理论分析、仿真分析和实验测试。通过理论分析和仿真分析,找到了各单元的变化趋势和最佳参数。在实验中,当悬臂梁夹紧长度为 10 mm,采用氟化乙丙(FEP)薄膜和铜箔独立三电层的三电模式,磁体数量为 3 时,PTE-HEH 的输出性能达到最佳状态。当外部负载电阻为 0.4 MΩ 时,最大输出电压为 69.52 V,最大输出功率可达 15.80 mW。这比三个发电机单独工作时的输出功率总和还要大。功率密度可达 25.99 W m-3。PTE-HEH 可点亮 97 个 LED 灯,并为温湿度传感器供电。PTE-HEH 还能使诱鱼灯正常工作。PTE-HEH 与诱鱼灯的结合为后续开发海上自供电捕鱼装置提供了新方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Smart Materials and Structures
Smart Materials and Structures 工程技术-材料科学:综合
CiteScore
7.50
自引率
12.20%
发文量
317
审稿时长
3 months
期刊介绍: Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures. A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信