Weakly compact sets in Orlicz–Bochner sequence spaces

IF 0.8 3区 数学 Q2 MATHEMATICS
Wanzhong Gong, Siyu Shi, Zhongrui Shi
{"title":"Weakly compact sets in Orlicz–Bochner sequence spaces","authors":"Wanzhong Gong,&nbsp;Siyu Shi,&nbsp;Zhongrui Shi","doi":"10.1002/mana.202400058","DOIUrl":null,"url":null,"abstract":"<p>In this work, we give three kinds of criteria for weak sets in Orlicz–Bochner sequence spaces <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>l</mi>\n <mrow>\n <mo>(</mo>\n <mi>Φ</mi>\n <mo>)</mo>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$l_{(\\Phi)}(X)$</annotation>\n </semantics></math> without constraints, conditions posited in each criterion are necessary and sufficient. As an application, we give criteria for weak sets in Orlicz sequence spaces. Well-known conclusions are exhibited once more, such as Schur's theorem, Banach–Alaoglu's theorem, and the boundedly compact principle of finite dimension space. The results obtained show that the weak compactness may not be extrapolated straightforwardly from <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>l</mi>\n <mrow>\n <mo>(</mo>\n <mi>Φ</mi>\n <mo>)</mo>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$l_{(\\Phi)}(X)$</annotation>\n </semantics></math>, for example, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>l</mi>\n <mi>∞</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$l_{\\infty }(X)$</annotation>\n </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 9","pages":"3313-3333"},"PeriodicalIF":0.8000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400058","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we give three kinds of criteria for weak sets in Orlicz–Bochner sequence spaces l ( Φ ) ( X ) $l_{(\Phi)}(X)$ without constraints, conditions posited in each criterion are necessary and sufficient. As an application, we give criteria for weak sets in Orlicz sequence spaces. Well-known conclusions are exhibited once more, such as Schur's theorem, Banach–Alaoglu's theorem, and the boundedly compact principle of finite dimension space. The results obtained show that the weak compactness may not be extrapolated straightforwardly from X $X$ to l ( Φ ) ( X ) $l_{(\Phi)}(X)$ , for example, l ( X ) $l_{\infty }(X)$ .

奥尔利奇-波赫纳序列空间中的弱紧凑集
在这项工作中,我们给出了奥立兹-波赫纳序列空间 l ( Φ ) ( X ) $l_{(\Phi)}(X)$ 中三种无约束弱集的判据,每个判据中提出的条件都是必要的和充分的。作为应用,我们给出了奥立兹序列空间中弱集的判据。我们再次展示了众所周知的结论,如舒尔定理、巴纳赫-阿洛格鲁定理和有限维空间的有界紧凑原理。所得到的结果表明,弱紧凑性可能无法从 X $X$ 直接外推到 l ( Φ ) ( X ) $l_{(\Phi)}(X)$ ,例如,l ∞ ( X ) $l_{\infty }(X)$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信