On roots of quadratic congruences

IF 0.8 3区 数学 Q2 MATHEMATICS
Hieu T. Ngo
{"title":"On roots of quadratic congruences","authors":"Hieu T. Ngo","doi":"10.1112/blms.13108","DOIUrl":null,"url":null,"abstract":"<p>The equidistribution of roots of quadratic congruences with prime moduli depends crucially upon effective bounds for special Weyl linear forms. Duke, Friedlander and Iwaniec discovered strong estimates for these Weyl linear forms when the quadratic polynomial has negative discriminant. Tóth proved analogous but weaker bounds when the quadratic polynomial has positive discriminant. We establish strong estimates for these Weyl linear forms for quadratics of positive discriminants. As an application of our bounds, we derive a quantitative uniform distribution of modular square roots with integer moduli in an arithmetic progression.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 9","pages":"2886-2910"},"PeriodicalIF":0.8000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13108","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The equidistribution of roots of quadratic congruences with prime moduli depends crucially upon effective bounds for special Weyl linear forms. Duke, Friedlander and Iwaniec discovered strong estimates for these Weyl linear forms when the quadratic polynomial has negative discriminant. Tóth proved analogous but weaker bounds when the quadratic polynomial has positive discriminant. We establish strong estimates for these Weyl linear forms for quadratics of positive discriminants. As an application of our bounds, we derive a quantitative uniform distribution of modular square roots with integer moduli in an arithmetic progression.

关于二次全等的根
质模二次全等的根的等分布关键取决于特殊韦尔线性形式的有效边界。当二次多项式具有负判别式时,杜克、弗里德兰德和伊瓦尼茨发现了这些韦尔线性形式的强估计值。当二次多项式具有正判别式时,托特证明了类似但较弱的边界。我们为这些 Weyl 线性形式建立了正判别式二次方程的强估计值。作为我们极限的应用,我们推导出了算术级数中具有整数模的模平方根的定量均匀分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信