Optimizing multi-time series forecasting for enhanced cloud resource utilization based on machine learning

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"Optimizing multi-time series forecasting for enhanced cloud resource utilization based on machine learning","authors":"","doi":"10.1016/j.knosys.2024.112489","DOIUrl":null,"url":null,"abstract":"<div><p>Due to its flexibility, cloud computing has become essential in modern operational schemes. However, the effective management of cloud resources to ensure cost-effectiveness and maintain high performance presents significant challenges. The pay-as-you-go pricing model, while convenient, can lead to escalated expenses and hinder long-term planning. Consequently, FinOps advocates proactive management strategies, with resource usage prediction emerging as a crucial optimization category. In this research, we introduce the multi-time series forecasting system (MSFS), a novel approach for data-driven resource optimization alongside the hybrid ensemble anomaly detection algorithm (HEADA). Our method prioritizes the concept-centric approach, focusing on factors such as prediction uncertainty, interpretability and domain-specific measures. Furthermore, we introduce the similarity-based time-series grouping (STG) method as a core component of MSFS for optimizing multi-time series forecasting, ensuring its scalability with the rapid growth of the cloud environment. The experiments performed demonstrate that our group-specific forecasting model (GSFM) approach enabled MSFS to achieve a significant cost reduction of up to 44%.</p></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0950705124011237/pdfft?md5=f19c1aa29695016ff8f758ff70605e16&pid=1-s2.0-S0950705124011237-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124011237","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Due to its flexibility, cloud computing has become essential in modern operational schemes. However, the effective management of cloud resources to ensure cost-effectiveness and maintain high performance presents significant challenges. The pay-as-you-go pricing model, while convenient, can lead to escalated expenses and hinder long-term planning. Consequently, FinOps advocates proactive management strategies, with resource usage prediction emerging as a crucial optimization category. In this research, we introduce the multi-time series forecasting system (MSFS), a novel approach for data-driven resource optimization alongside the hybrid ensemble anomaly detection algorithm (HEADA). Our method prioritizes the concept-centric approach, focusing on factors such as prediction uncertainty, interpretability and domain-specific measures. Furthermore, we introduce the similarity-based time-series grouping (STG) method as a core component of MSFS for optimizing multi-time series forecasting, ensuring its scalability with the rapid growth of the cloud environment. The experiments performed demonstrate that our group-specific forecasting model (GSFM) approach enabled MSFS to achieve a significant cost reduction of up to 44%.

基于机器学习优化多时间序列预测,提高云资源利用率
云计算因其灵活性,已成为现代运营计划中不可或缺的一部分。然而,如何有效管理云计算资源,以确保成本效益并保持高性能,是一项重大挑战。现收现付的定价模式虽然方便,但会导致支出增加,阻碍长期规划。因此,FinOps 提倡积极主动的管理策略,而资源使用预测则成为一个重要的优化类别。在本研究中,我们介绍了多时间序列预测系统(MSFS),这是一种与混合集合异常检测算法(HEADA)相结合的数据驱动型资源优化新方法。我们的方法优先考虑以概念为中心的方法,重点关注预测的不确定性、可解释性和特定领域测量等因素。此外,我们还引入了基于相似性的时间序列分组(STG)方法,作为 MSFS 的核心组件,用于优化多时间序列预测,确保其可扩展性与云环境的快速增长相适应。实验证明,我们的分组预测模型(GSFM)方法使 MSFS 的成本大幅降低了 44%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信