Antimicrobial activity of essential oil components against Escherichia coli depends on the food components present in a food matrix

IF 4.5 1区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Héctor Gómez-Llorente , Édgar Pérez-Esteve , José M. Barat , M. Consuelo Jiménez , Concepción González-Bello , Isabel Fernández-Segovia
{"title":"Antimicrobial activity of essential oil components against Escherichia coli depends on the food components present in a food matrix","authors":"Héctor Gómez-Llorente ,&nbsp;Édgar Pérez-Esteve ,&nbsp;José M. Barat ,&nbsp;M. Consuelo Jiménez ,&nbsp;Concepción González-Bello ,&nbsp;Isabel Fernández-Segovia","doi":"10.1016/j.fm.2024.104638","DOIUrl":null,"url":null,"abstract":"<div><p>Despite numerous studies evaluating the antimicrobial activity of essential oil components (EOCs) against different microorganisms, the effect of the composition of the matrix in which they are applied remains unexplored. Hence, the effect of different food components (i.e., proteins, lipids, carbohydrates, acids, ethanol) on vanillin antimicrobial activity was carried out by assessing the growth of <em>E. coli</em> at different incubation times (0, 1, 4, 8 and 24 h). Based on these outcomes, the food components that most adversely affected vanillin antimicrobial activity were subsequently tested with four other EOCs (i.e., carvacrol, eugenol, geraniol, thymol). The effective concentration of antimicrobials after coming into contact with food components was quantified. The results indicated that bovine serum albumin (BSA), sunflower oil and carbohydrates partially or completely inhibited the antimicrobial efficacy of the tested EOCs, and the inhibition rate depended on the specific EOC-food component combination. Geraniol was notably the most efficient with BSA present. Eugenol performed best with sunflower oil. Carvacrol, eugenol, geraniol and thymol were more effective than vanillin with D-lactose present. This study confirmed that loss of EOCs’ effective concentration due to an interaction with food constituents is a significant cause of antimicrobial activity inhibition. These findings underscore the importance of considering matrix composition when selecting antimicrobials to combat a particular strain in real food applications.</p></div>","PeriodicalId":12399,"journal":{"name":"Food microbiology","volume":"125 ","pages":"Article 104638"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S074000202400176X/pdfft?md5=02c634e3b2743872dff4a3f973836c90&pid=1-s2.0-S074000202400176X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S074000202400176X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite numerous studies evaluating the antimicrobial activity of essential oil components (EOCs) against different microorganisms, the effect of the composition of the matrix in which they are applied remains unexplored. Hence, the effect of different food components (i.e., proteins, lipids, carbohydrates, acids, ethanol) on vanillin antimicrobial activity was carried out by assessing the growth of E. coli at different incubation times (0, 1, 4, 8 and 24 h). Based on these outcomes, the food components that most adversely affected vanillin antimicrobial activity were subsequently tested with four other EOCs (i.e., carvacrol, eugenol, geraniol, thymol). The effective concentration of antimicrobials after coming into contact with food components was quantified. The results indicated that bovine serum albumin (BSA), sunflower oil and carbohydrates partially or completely inhibited the antimicrobial efficacy of the tested EOCs, and the inhibition rate depended on the specific EOC-food component combination. Geraniol was notably the most efficient with BSA present. Eugenol performed best with sunflower oil. Carvacrol, eugenol, geraniol and thymol were more effective than vanillin with D-lactose present. This study confirmed that loss of EOCs’ effective concentration due to an interaction with food constituents is a significant cause of antimicrobial activity inhibition. These findings underscore the importance of considering matrix composition when selecting antimicrobials to combat a particular strain in real food applications.

精油成分对大肠杆菌的抗菌活性取决于食品基质中的食品成分
尽管有许多研究评估了精油成分(EOCs)对不同微生物的抗菌活性,但应用精油成分的基质成分的影响仍未得到探讨。因此,通过评估不同培养时间(0、1、4、8 和 24 小时)下大肠杆菌的生长情况,研究了不同食物成分(即蛋白质、脂类、碳水化合物、酸、乙醇)对香兰素抗菌活性的影响。根据这些结果,对香兰素抗菌活性影响最大的食品成分随后与其他四种 EOC(即香芹酚、丁香酚、香叶醇和百里酚)一起进行了测试。对抗菌剂与食品成分接触后的有效浓度进行了量化。结果表明,牛血清白蛋白(BSA)、葵花籽油和碳水化合物部分或完全抑制了受测 EOC 的抗菌功效,抑制率取决于特定的 EOC 食品成分组合。在含有 BSA 的情况下,香叶醇的抑制效率最高。丁香酚在葵花籽油中的效果最好。存在 D-乳糖时,香芹醇、丁香酚、香叶醇和百里酚比香兰素更有效。这项研究证实,由于与食物成分的相互作用,EOCs 的有效浓度降低是抑制抗菌活性的一个重要原因。这些发现强调了在实际食品应用中选择抗菌剂来对付特定菌株时考虑基质成分的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food microbiology
Food microbiology 工程技术-生物工程与应用微生物
CiteScore
11.30
自引率
3.80%
发文量
179
审稿时长
44 days
期刊介绍: Food Microbiology publishes original research articles, short communications, review papers, letters, news items and book reviews dealing with all aspects of the microbiology of foods. The editors aim to publish manuscripts of the highest quality which are both relevant and applicable to the broad field covered by the journal. Studies must be novel, have a clear connection to food microbiology, and be of general interest to the international community of food microbiologists. The editors make every effort to ensure rapid and fair reviews, resulting in timely publication of accepted manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信