Stefan M. Schmalholz, Lyudmila Khakimova, Yury Podladchikov, Erwan Bras, Philippe Yamato, Timm John
{"title":"(De)hydration Front Propagation Into Zero-Permeability Rock","authors":"Stefan M. Schmalholz, Lyudmila Khakimova, Yury Podladchikov, Erwan Bras, Philippe Yamato, Timm John","doi":"10.1029/2023GC011422","DOIUrl":null,"url":null,"abstract":"<p>Hydration and dehydration reactions play pivotal roles in plate tectonics and the deep water cycle, yet many facets of (de)hydration reactions remain unclear. Here, we study (de)hydration reactions where associated solid density changes are predominantly balanced by porosity changes, with solid rock deformation playing a minor role. We propose a hypothesis for three scenarios of (de)hydration front propagation and test it using one-dimensional hydro-mechanical-chemical models. Our models couple porous fluid flow, solid rock volumetric deformation, and (de)hydration reactions described by equilibrium thermodynamics. We couple our transport model with reactions through fluid pressure: the fluid pressure gradient governs porous flow and the fluid pressure magnitude controls the reaction boundary. Our model validates the hypothesized scenarios and shows that the change in solid density across the reaction boundary, from lower to higher pressure, dictates whether hydration or dehydration fronts propagate: decreasing solid density causes dehydration front propagation in the direction opposite to fluid flow while increasing solid density enables both hydration and dehydration front propagation in the same direction as fluid flow. Our models demonstrate that reactions can drive the propagation of (de)hydration fronts, characterized by sharp porosity fronts, into a viscous medium with zero porosity and permeability; such propagation is impossible without reactions, as porosity fronts become trapped. We apply our model to serpentinite dehydration reactions with positive and negative Clapeyron slopes and granulite hydration (eclogitization). We use the results of systematic numerical simulations to derive a new equation that allows estimating the transient, reaction-induced permeability of natural (de)hydration zones.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 9","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GC011422","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GC011422","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Hydration and dehydration reactions play pivotal roles in plate tectonics and the deep water cycle, yet many facets of (de)hydration reactions remain unclear. Here, we study (de)hydration reactions where associated solid density changes are predominantly balanced by porosity changes, with solid rock deformation playing a minor role. We propose a hypothesis for three scenarios of (de)hydration front propagation and test it using one-dimensional hydro-mechanical-chemical models. Our models couple porous fluid flow, solid rock volumetric deformation, and (de)hydration reactions described by equilibrium thermodynamics. We couple our transport model with reactions through fluid pressure: the fluid pressure gradient governs porous flow and the fluid pressure magnitude controls the reaction boundary. Our model validates the hypothesized scenarios and shows that the change in solid density across the reaction boundary, from lower to higher pressure, dictates whether hydration or dehydration fronts propagate: decreasing solid density causes dehydration front propagation in the direction opposite to fluid flow while increasing solid density enables both hydration and dehydration front propagation in the same direction as fluid flow. Our models demonstrate that reactions can drive the propagation of (de)hydration fronts, characterized by sharp porosity fronts, into a viscous medium with zero porosity and permeability; such propagation is impossible without reactions, as porosity fronts become trapped. We apply our model to serpentinite dehydration reactions with positive and negative Clapeyron slopes and granulite hydration (eclogitization). We use the results of systematic numerical simulations to derive a new equation that allows estimating the transient, reaction-induced permeability of natural (de)hydration zones.
期刊介绍:
Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged.
Areas of interest for this peer-reviewed journal include, but are not limited to:
The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution
Principles and applications of geochemical proxies to studies of Earth history
The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them
The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales
Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets
The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets
Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.