Extracellular Vesicles Obtained from Hypoxic Mesenchymal Stromal Cells Induce Neurological Recovery, Anti-inflammation, and Brain Remodeling After Distal Middle Cerebral Artery Occlusion in Rats.

IF 3.8 2区 医学 Q1 CLINICAL NEUROLOGY
Mihaela Abuzan, Roxana Surugiu, Chen Wang, Ayan Mohamud-Yusuf, Tobias Tertel, Bogdan Catalin, Thorsten R Doeppner, Bernd Giebel, Dirk M Hermann, Aurel Popa-Wagner
{"title":"Extracellular Vesicles Obtained from Hypoxic Mesenchymal Stromal Cells Induce Neurological Recovery, Anti-inflammation, and Brain Remodeling After Distal Middle Cerebral Artery Occlusion in Rats.","authors":"Mihaela Abuzan, Roxana Surugiu, Chen Wang, Ayan Mohamud-Yusuf, Tobias Tertel, Bogdan Catalin, Thorsten R Doeppner, Bernd Giebel, Dirk M Hermann, Aurel Popa-Wagner","doi":"10.1007/s12975-024-01266-5","DOIUrl":null,"url":null,"abstract":"<p><p>Small extracellular vesicles (sEVs) obtained from mesenchymal stromal cells (MSCs) have shown considerable promise as restorative stroke treatment. In a head-to-head comparison in mice exposed to transient proximal middle cerebral artery occlusion (MCAO), sEVs obtained from MSCs cultured under hypoxic conditions particularly potently enhanced long-term brain tissue survival, microvascular integrity, and angiogenesis. These observations suggest that hypoxic preconditioning might represent the strategy of choice for harvesting MSC-sEVs for clinical stroke trials. To test the efficacy of hypoxic MSCs in a second stroke model in an additional species, we now exposed 6-8-month-old Sprague-Dawley rats to permanent distal MCAO and intravenously administered vehicle, platelet sEVs, or sEVs obtained from hypoxic MSCs (1% O<sub>2</sub>; 2 × 10<sup>6</sup> or 2 × 10<sup>7</sup> cell equivalents/kg) at 24 h, 3, 7, and 14 days post-MCAO. Over 28 days, motor-coordination recovery was evaluated by rotating pole and cylinder tests. Ischemic injury, brain inflammatory responses, and peri-infarct angiogenesis were assessed by infarct volumetry and immunohistochemistry. sEVs obtained from hypoxic MSCs did not influence infarct volume in this permanent MCAO model, but promoted motor-coordination recovery over 28 days at both sEV doses. Ischemic injury was associated with brain ED1<sup>+</sup> macrophage infiltrates and Iba1<sup>+</sup> microglia accumulation in the peri-infarct cortex of vehicle-treated rats. Hypoxic MSC-sEVs reduced brain macrophage infiltrates and microglia accumulation in the peri-infarct cortex. In vehicle-treated rats, CD31<sup>+</sup>/BrdU<sup>+</sup> proliferating endothelial cells were found in the peri-infarct cortex. Hypoxic MSC-sEVs increased the number of CD31<sup>+</sup>/BrdU<sup>+</sup> proliferating endothelial cells. Our results provide evidence that hypoxic MSC-derived sEVs potently enhance neurological recovery, reduce neuroinflammation. and increase angiogenesis in rat permanent distal MCAO.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Stroke Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12975-024-01266-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Small extracellular vesicles (sEVs) obtained from mesenchymal stromal cells (MSCs) have shown considerable promise as restorative stroke treatment. In a head-to-head comparison in mice exposed to transient proximal middle cerebral artery occlusion (MCAO), sEVs obtained from MSCs cultured under hypoxic conditions particularly potently enhanced long-term brain tissue survival, microvascular integrity, and angiogenesis. These observations suggest that hypoxic preconditioning might represent the strategy of choice for harvesting MSC-sEVs for clinical stroke trials. To test the efficacy of hypoxic MSCs in a second stroke model in an additional species, we now exposed 6-8-month-old Sprague-Dawley rats to permanent distal MCAO and intravenously administered vehicle, platelet sEVs, or sEVs obtained from hypoxic MSCs (1% O2; 2 × 106 or 2 × 107 cell equivalents/kg) at 24 h, 3, 7, and 14 days post-MCAO. Over 28 days, motor-coordination recovery was evaluated by rotating pole and cylinder tests. Ischemic injury, brain inflammatory responses, and peri-infarct angiogenesis were assessed by infarct volumetry and immunohistochemistry. sEVs obtained from hypoxic MSCs did not influence infarct volume in this permanent MCAO model, but promoted motor-coordination recovery over 28 days at both sEV doses. Ischemic injury was associated with brain ED1+ macrophage infiltrates and Iba1+ microglia accumulation in the peri-infarct cortex of vehicle-treated rats. Hypoxic MSC-sEVs reduced brain macrophage infiltrates and microglia accumulation in the peri-infarct cortex. In vehicle-treated rats, CD31+/BrdU+ proliferating endothelial cells were found in the peri-infarct cortex. Hypoxic MSC-sEVs increased the number of CD31+/BrdU+ proliferating endothelial cells. Our results provide evidence that hypoxic MSC-derived sEVs potently enhance neurological recovery, reduce neuroinflammation. and increase angiogenesis in rat permanent distal MCAO.

Abstract Image

从缺氧间充质基质细胞获得的细胞外小泡诱导大鼠大脑中动脉远端闭塞后的神经功能恢复、抗炎和脑重塑
从间充质基质细胞(MSCs)中获得的小细胞外囊泡(sEVs)在中风的恢复性治疗中显示出了相当大的前景。在对暴露于一过性近端大脑中动脉闭塞(MCAO)的小鼠进行的头对头比较中,从缺氧条件下培养的间充质干细胞中获得的 sEVs 特别有效地提高了脑组织的长期存活率、微血管完整性和血管生成。这些观察结果表明,缺氧预处理可能是收获间充质干细胞 sEVs 用于中风临床试验的首选策略。为了测试缺氧间充质干细胞在另一个物种的第二种中风模型中的疗效,我们现在对6-8个月大的Sprague-Dawley大鼠进行永久性远端MCAO,并在MCAO后24小时、3、7和14天静脉注射载体、血小板sEVs或从缺氧间充质干细胞(1%氧气;2×106或2×107细胞当量/千克)中获得的sEVs。在28天内,通过旋转杆和圆柱体测试评估运动协调能力的恢复情况。缺血性损伤、脑部炎症反应和梗死周围血管生成通过梗死容积测量和免疫组化进行了评估。在这种永久性 MCAO 模型中,从缺氧间充质干细胞中获得的 sEVs 不会影响梗死容积,但在两种 sEV 剂量下,sEVs 都能促进运动协调能力在 28 天内的恢复。缺血性损伤与药物治疗大鼠脑ED1+巨噬细胞浸润和梗死周围皮层Iba1+小胶质细胞聚集有关。低氧间充质干细胞-SEVs可减少脑缺血周围皮质的巨噬细胞浸润和小胶质细胞聚集。在用药物治疗的大鼠中,在梗死周围皮层发现了CD31+/BrdU+增殖的内皮细胞。缺氧间充质干细胞-SEVs增加了CD31+/BrdU+增殖内皮细胞的数量。我们的研究结果证明,缺氧间充质干细胞衍生的sEVs能有效促进大鼠永久性远端MCAO的神经功能恢复、减少神经炎症并增加血管生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Translational Stroke Research
Translational Stroke Research CLINICAL NEUROLOGY-NEUROSCIENCES
CiteScore
13.80
自引率
4.30%
发文量
130
审稿时长
6-12 weeks
期刊介绍: Translational Stroke Research covers basic, translational, and clinical studies. The Journal emphasizes novel approaches to help both to understand clinical phenomenon through basic science tools, and to translate basic science discoveries into the development of new strategies for the prevention, assessment, treatment, and enhancement of central nervous system repair after stroke and other forms of neurotrauma. Translational Stroke Research focuses on translational research and is relevant to both basic scientists and physicians, including but not restricted to neuroscientists, vascular biologists, neurologists, neuroimagers, and neurosurgeons.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信