Andrés Tangarife-Escobar, Georg Guggenberger, Xiaojuan Feng, Estefanía Muñoz, Ingrid Chanca, Matthias Peichl, Paul Smith, Carlos A. Sierra
{"title":"Radiocarbon Isotopic Disequilibrium Shows Little Incorporation of New Carbon in Mineral Soils of a Boreal Forest Ecosystem","authors":"Andrés Tangarife-Escobar, Georg Guggenberger, Xiaojuan Feng, Estefanía Muñoz, Ingrid Chanca, Matthias Peichl, Paul Smith, Carlos A. Sierra","doi":"10.1029/2024JG008191","DOIUrl":null,"url":null,"abstract":"<p>Boreal forests fix substantial amounts of atmospheric carbon (C). However, the timescales at which this C is cycled through the ecosystem are not yet well understood. To elucidate the temporal dynamics between photosynthesis, allocation and respiration, we assessed the radiocarbon (<span></span><math>\n <semantics>\n <mrow>\n <mmultiscripts>\n <mi>C</mi>\n <none></none>\n <none></none>\n <mprescripts></mprescripts>\n <none></none>\n <mn>14</mn>\n </mmultiscripts>\n </mrow>\n <annotation> ${}^{14}\\mathrm{C}$</annotation>\n </semantics></math>) disequilibrium (<i>D</i>) between different C pools and the current atmosphere to understand the fate of C in a boreal forest ecosystem. Samples of vegetation, fungi, soil and atmospheric <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>C</mi>\n <mi>O</mi>\n </mrow>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{C}\\mathrm{O}}_{2}$</annotation>\n </semantics></math> were collected at the Integrated Carbon Observation System station Svartberget in northern Sweden. Additionally, we analyzed the <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>Δ</mi>\n <mn>14</mn>\n </msup>\n </mrow>\n <annotation> ${{\\Delta }}^{14}$</annotation>\n </semantics></math>C-<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>C</mi>\n <mi>O</mi>\n </mrow>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{C}\\mathrm{O}}_{2}$</annotation>\n </semantics></math> from incubated topsoil and forest floor soil respiration (FFSR) collected over a 24-hr cycle, and calculated the <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>Δ</mi>\n <mn>14</mn>\n </msup>\n </mrow>\n <annotation> ${{\\Delta }}^{14}$</annotation>\n </semantics></math>C signature of the total ecosystem respiration (<i>Re</i>) using the Miller-Tans method. We found that vegetation pools presented a positive <i>D</i> enriched with bomb <span></span><math>\n <semantics>\n <mrow>\n <mmultiscripts>\n <mi>C</mi>\n <none></none>\n <none></none>\n <mprescripts></mprescripts>\n <none></none>\n <mn>14</mn>\n </mmultiscripts>\n </mrow>\n <annotation> ${}^{14}\\mathrm{C}$</annotation>\n </semantics></math>, suggesting a fast-cycling rate (months to years) for living biomass and intermediate (years to decades) for dead biomass. In contrast, mineral soils showed a negative <i>D</i>, indicating minimal incorporation of bomb <span></span><math>\n <semantics>\n <mrow>\n <mmultiscripts>\n <mi>C</mi>\n <none></none>\n <none></none>\n <mprescripts></mprescripts>\n <none></none>\n <mn>14</mn>\n </mmultiscripts>\n </mrow>\n <annotation> ${}^{14}\\mathrm{C}$</annotation>\n </semantics></math>. FFSR showed diurnal <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>Δ</mi>\n <mn>14</mn>\n </msup>\n </mrow>\n <annotation> ${{\\Delta }}^{14}$</annotation>\n </semantics></math>C variability (mean = 8.5‰), suggesting predominance of autotrophic respiration of recently fixed labile C. Calculations for <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>Δ</mi>\n <mn>14</mn>\n </msup>\n </mrow>\n <annotation> ${{\\Delta }}^{14}$</annotation>\n </semantics></math>C in <i>Re</i> (median = 12.7‰) demonstrate the predominance of C fixed from days to decades. Although the boreal forest stores significant amounts of C, most of it is in the soil organic layer and the vegetation, where it is cycled relatively fast. Only minimal amounts of recent C are incorporated into the mineral soil over long timescales despite the current stocks in soils being relatively old.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"129 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008191","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008191","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Boreal forests fix substantial amounts of atmospheric carbon (C). However, the timescales at which this C is cycled through the ecosystem are not yet well understood. To elucidate the temporal dynamics between photosynthesis, allocation and respiration, we assessed the radiocarbon () disequilibrium (D) between different C pools and the current atmosphere to understand the fate of C in a boreal forest ecosystem. Samples of vegetation, fungi, soil and atmospheric were collected at the Integrated Carbon Observation System station Svartberget in northern Sweden. Additionally, we analyzed the C- from incubated topsoil and forest floor soil respiration (FFSR) collected over a 24-hr cycle, and calculated the C signature of the total ecosystem respiration (Re) using the Miller-Tans method. We found that vegetation pools presented a positive D enriched with bomb , suggesting a fast-cycling rate (months to years) for living biomass and intermediate (years to decades) for dead biomass. In contrast, mineral soils showed a negative D, indicating minimal incorporation of bomb . FFSR showed diurnal C variability (mean = 8.5‰), suggesting predominance of autotrophic respiration of recently fixed labile C. Calculations for C in Re (median = 12.7‰) demonstrate the predominance of C fixed from days to decades. Although the boreal forest stores significant amounts of C, most of it is in the soil organic layer and the vegetation, where it is cycled relatively fast. Only minimal amounts of recent C are incorporated into the mineral soil over long timescales despite the current stocks in soils being relatively old.
北方森林能固定大量的大气碳(C)。然而,人们对这些碳在生态系统中循环的时间尺度还不甚了解。为了阐明光合作用、碳分配和呼吸作用之间的时间动态,我们评估了不同碳库与当前大气之间的放射性碳(C 14 ${}^{14}\mathrm{C}$ )不平衡(D),以了解碳在北方森林生态系统中的去向。我们在瑞典北部的综合碳观测系统 Svartberget 站采集了植被、真菌、土壤和大气中的 C O 2 ${\mathrm{C}\mathrm{O}}_{2}$样本。此外,我们还分析了 24 小时周期内从培养表土和林地土壤呼吸(FFSR)中收集的 Δ 14 ${{\Delta }}^{14}$ C- C O 2 ${{mathrm{C}\mathrm{O}}_{2}$ ,并使用米勒-坦斯方法计算了生态系统总呼吸(Re)的 Δ 14 ${{\Delta }}^{14}$ C 标志。我们发现,植被池呈现出富含弹 C 14 ${}^{14}\mathrm{C}$ 的正 D,这表明生物量的循环速率较快(几个月到几年),而死亡生物量的循环速率则介于两者之间(几年到几十年)。相比之下,矿质土壤的 D 值为负,表明弹态 C 14 ${}^{14} amathrm{C}$ 的吸收量极小。对 Re 中 Δ 14 ${{\Delta }}^{14}$ C 的计算(中位数 = 12.7‰)表明,从数天到数十年固定的 C 占主导地位。虽然北方森林储存了大量的碳,但大部分都在土壤有机层和植被中,在那里循环相对较快。尽管目前土壤中的碳储量相对较老,但只有极少量的新碳在较长时间内融入矿质土壤中。
期刊介绍:
JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology