Eccentricity matrix of corona of two graphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Smrati Pandey, Lavanya Selvaganesh, Jesmina Pervin
{"title":"Eccentricity matrix of corona of two graphs","authors":"Smrati Pandey,&nbsp;Lavanya Selvaganesh,&nbsp;Jesmina Pervin","doi":"10.1016/j.dam.2024.08.017","DOIUrl":null,"url":null,"abstract":"<div><p>The eccentricity matrix, <span><math><mrow><mi>ɛ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, of a graph <span><math><mi>G</mi></math></span> is derived from the distance matrix by letting the <span><math><mrow><mi>u</mi><mi>v</mi></mrow></math></span>-th element to be equal to the distance between two vertices <span><math><mi>u</mi></math></span> and <span><math><mi>v</mi></math></span>, if the distance is the minimum of their eccentricities and zero otherwise. In this article, we study the spectrum of <span><math><mrow><mi>ɛ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and establish an upper bound for its <span><math><mi>ɛ</mi></math></span>-spectral radius when <span><math><mi>G</mi></math></span> is a self-centered graph.</p><p>Further, we explore the structure of <span><math><mrow><mi>ɛ</mi><mrow><mo>(</mo><mi>G</mi><mo>∘</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>G</mi><mo>∘</mo><mi>H</mi></mrow></math></span> is the corona product of a self-centered graph <span><math><mi>G</mi></math></span> and a graph <span><math><mi>H</mi></math></span>. We characterize the irreducibility of <span><math><mrow><mi>ɛ</mi><mrow><mo>(</mo><mi>G</mi><mo>∘</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> and, in this process, find that it is independent of <span><math><mrow><mi>ɛ</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>, which allows us to construct infinitely many graphs with irreducible eccentricity matrix. Moreover, we compute the complete spectrum of <span><math><mrow><mi>ɛ</mi><mrow><mo>(</mo><mi>G</mi><mo>∘</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> including its <span><math><mi>ɛ</mi></math></span>-eigenvectors, <span><math><mi>ɛ</mi></math></span>-energy, and <span><math><mi>ɛ</mi></math></span>-inertia. Finally, we conclude that several non-isomorphic <span><math><mi>ɛ</mi></math></span>-co-spectral graphs can be generated using the corona product of two graphs.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"359 ","pages":"Pages 354-363"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24003755","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The eccentricity matrix, ɛ(G), of a graph G is derived from the distance matrix by letting the uv-th element to be equal to the distance between two vertices u and v, if the distance is the minimum of their eccentricities and zero otherwise. In this article, we study the spectrum of ɛ(G) and establish an upper bound for its ɛ-spectral radius when G is a self-centered graph.

Further, we explore the structure of ɛ(GH), where GH is the corona product of a self-centered graph G and a graph H. We characterize the irreducibility of ɛ(GH) and, in this process, find that it is independent of ɛ(H), which allows us to construct infinitely many graphs with irreducible eccentricity matrix. Moreover, we compute the complete spectrum of ɛ(GH) including its ɛ-eigenvectors, ɛ-energy, and ɛ-inertia. Finally, we conclude that several non-isomorphic ɛ-co-spectral graphs can be generated using the corona product of two graphs.

两图日冕的偏心矩阵
图 G 的偏心矩阵ɛ(G)由距离矩阵导出,如果两个顶点 u 和 v 之间的距离是它们偏心率的最小值,则 uv 元素等于这两个顶点之间的距离,否则为零。在本文中,我们研究了ɛ(G)的谱,并建立了当 G 是自中心图时其ɛ谱半径的上限。此外,我们还探索了ɛ(G∘H)的结构,其中 G∘H 是自中心图 G 和图 H 的日冕积。我们描述了ɛ(G∘H)的不可还原性,并在此过程中发现它与ɛ(H)无关,这使得我们可以构造无限多具有不可还原偏心矩阵的图。此外,我们还计算了ɛ(G∘H)的完整谱,包括它的ɛ特征向量、ɛ能量和ɛ惯性。最后,我们得出结论:利用两个图形的日冕积,可以生成多个非同构的ɛ-共谱图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信