Shapley–Folkman-type theorem for integrally convex sets

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Kazuo Murota , Akihisa Tamura
{"title":"Shapley–Folkman-type theorem for integrally convex sets","authors":"Kazuo Murota ,&nbsp;Akihisa Tamura","doi":"10.1016/j.dam.2024.08.015","DOIUrl":null,"url":null,"abstract":"<div><p>The Shapley–Folkman theorem is a statement about the Minkowski sum of (non-convex) sets, expressing the closeness of the Minkowski sum to convexity in a quantitative manner. This paper establishes similar theorems for integrally convex sets, M<span><math><msup><mrow></mrow><mrow><mi>♮</mi></mrow></msup></math></span>-convex sets, and L<span><math><msup><mrow></mrow><mrow><mi>♮</mi></mrow></msup></math></span>-convex sets, which are major classes of discrete convex sets in discrete convex analysis.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 42-50"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166218X24003731/pdfft?md5=d073edec49748d4427d0a7829a4d4a66&pid=1-s2.0-S0166218X24003731-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24003731","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The Shapley–Folkman theorem is a statement about the Minkowski sum of (non-convex) sets, expressing the closeness of the Minkowski sum to convexity in a quantitative manner. This paper establishes similar theorems for integrally convex sets, M-convex sets, and L-convex sets, which are major classes of discrete convex sets in discrete convex analysis.

积分凸集的 Shapley-Folkman 型定理
沙普利-福克曼定理是关于(非凸)集合的闵科夫斯基和的一个陈述,以定量的方式表达了闵科夫斯基和与凸性的接近程度。本文为积分凸集、M♮凸集和 L♮凸集建立了类似的定理,它们是离散凸分析中离散凸集的主要类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信