Jing Lian , Jibao Zhang , Huaikun Zhang , Yuekai Chen , Jiajun Zhang , Jizhao Liu
{"title":"Image inpainting by bidirectional information flow on texture and structure","authors":"Jing Lian , Jibao Zhang , Huaikun Zhang , Yuekai Chen , Jiajun Zhang , Jizhao Liu","doi":"10.1016/j.sigpro.2024.109672","DOIUrl":null,"url":null,"abstract":"<div><p>Image inpainting aims to recover damaged regions of a corrupted image and maintain the integrity of the structure and texture within the filled regions. Previous popular approaches have restored images with both vivid textures and structures by introducing structure priors. However, the structure prior-based approaches meet the following main challenges: (1) the fine-grained textures suffer from adverse inpainting effects because they do not fully consider the interaction between structures and textures, (2) the features of the multi-scale objects in structural and textural information cannot be extracted correctly due to the limited receptive fields in convolution operation. In this paper, we propose a texture and structure bidirectional generation network (TSBGNet) to address the above issues. We first reconstruct the texture and structure of corrupted images; then, we design a texture-enhanced-FCMSPCNN (TE-FCMSPCNN) to optimize the generated textures. We also conjoin a bidirectional information flow (BIF) module and a detail enhancement (DE) module to integrate texture and structure features globally. Additionally, we derive a multi-scale attentional feature fusion (MAFF) module to fuse multi-scale features. Experimental results demonstrate that TSBGNet effectively reconstructs realistic contents and significantly outperforms other state-of-the-art approaches on three popular datasets. Moreover, the proposed approach yields promising results on the Dunhuang Mogao Grottoes Mural dataset.</p></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"226 ","pages":"Article 109672"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0165168424002925/pdfft?md5=c9cca6312a3bc5cd8f65a072b69a1004&pid=1-s2.0-S0165168424002925-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424002925","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Image inpainting aims to recover damaged regions of a corrupted image and maintain the integrity of the structure and texture within the filled regions. Previous popular approaches have restored images with both vivid textures and structures by introducing structure priors. However, the structure prior-based approaches meet the following main challenges: (1) the fine-grained textures suffer from adverse inpainting effects because they do not fully consider the interaction between structures and textures, (2) the features of the multi-scale objects in structural and textural information cannot be extracted correctly due to the limited receptive fields in convolution operation. In this paper, we propose a texture and structure bidirectional generation network (TSBGNet) to address the above issues. We first reconstruct the texture and structure of corrupted images; then, we design a texture-enhanced-FCMSPCNN (TE-FCMSPCNN) to optimize the generated textures. We also conjoin a bidirectional information flow (BIF) module and a detail enhancement (DE) module to integrate texture and structure features globally. Additionally, we derive a multi-scale attentional feature fusion (MAFF) module to fuse multi-scale features. Experimental results demonstrate that TSBGNet effectively reconstructs realistic contents and significantly outperforms other state-of-the-art approaches on three popular datasets. Moreover, the proposed approach yields promising results on the Dunhuang Mogao Grottoes Mural dataset.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.