6-Methoxyldihydrochelerythrine Chloride Inhibiting Intra and Extracellular Drug-Resistant Bacteria.

IF 4 2区 医学 Q2 CHEMISTRY, MEDICINAL
ACS Infectious Diseases Pub Date : 2024-09-13 Epub Date: 2024-08-26 DOI:10.1021/acsinfecdis.4c00571
Li-Yu Bai, Zhao-Jie Wang, Qing-Yu Lu, Huan Huang, Yan-Yan Zhu, Yun-Li Zhao, Xiao-Dong Luo
{"title":"6-Methoxyldihydrochelerythrine Chloride Inhibiting Intra and Extracellular Drug-Resistant Bacteria.","authors":"Li-Yu Bai, Zhao-Jie Wang, Qing-Yu Lu, Huan Huang, Yan-Yan Zhu, Yun-Li Zhao, Xiao-Dong Luo","doi":"10.1021/acsinfecdis.4c00571","DOIUrl":null,"url":null,"abstract":"<p><p>Vancomycin-resistant enterococcus (VRE) is a major nosocomial pathogen that exhibits enhanced infectivity due to its robust virulence and biofilm-forming capabilities. In this study, 6-methoxyldihydrochelerythrine chloride (6-MDC) inhibited the growth of exponential-phase VRE and restored VRE's sensitivity to vancomycin. 6-MDC predominantly suppressed the <i>de novo</i> biosynthetic pathway of pyrimidine and purine in VRE by the RNA-Seq analysis, resulting in obstructed DNA synthesis, which subsequently weakened bacterial virulence and impeded intracellular survival. Furthermore, 6-MDC inhibited biofilm formation, eradicated established biofilms, reduced virulence, and enhanced the host immune response to prevent intracellular survival and replication of VRE. Finally, 6-MDC reduced the VRE load in peritoneal fluid and cells significantly in a murine peritoneal infection model. This paper provides insight into the potential antimicrobial target of benzophenanthridine alkaloids for the first time.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":"3430-3439"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.4c00571","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Vancomycin-resistant enterococcus (VRE) is a major nosocomial pathogen that exhibits enhanced infectivity due to its robust virulence and biofilm-forming capabilities. In this study, 6-methoxyldihydrochelerythrine chloride (6-MDC) inhibited the growth of exponential-phase VRE and restored VRE's sensitivity to vancomycin. 6-MDC predominantly suppressed the de novo biosynthetic pathway of pyrimidine and purine in VRE by the RNA-Seq analysis, resulting in obstructed DNA synthesis, which subsequently weakened bacterial virulence and impeded intracellular survival. Furthermore, 6-MDC inhibited biofilm formation, eradicated established biofilms, reduced virulence, and enhanced the host immune response to prevent intracellular survival and replication of VRE. Finally, 6-MDC reduced the VRE load in peritoneal fluid and cells significantly in a murine peritoneal infection model. This paper provides insight into the potential antimicrobial target of benzophenanthridine alkaloids for the first time.

Abstract Image

6-Methoxyldihydrochelerythrine Chloride 对细胞内和细胞外耐药细菌的抑制作用。
耐万古霉素肠球菌(VRE)是一种主要的鼻腔病原体,由于其强大的毒力和生物膜形成能力,其感染性有所增强。在这项研究中,6-甲氧基二氢氯化赤藓红(6-MDC)抑制了指数期 VRE 的生长,并恢复了 VRE 对万古霉素的敏感性。通过 RNA-Seq 分析,6-MDC 主要抑制了 VRE 中嘧啶和嘌呤的从头生物合成途径,导致 DNA 合成受阻,从而削弱了细菌的毒力,阻碍了其在细胞内的存活。此外,6-MDC 还能抑制生物膜的形成,根除已形成的生物膜,降低毒力,并增强宿主的免疫反应,从而阻止 VRE 在细胞内存活和复制。最后,在小鼠腹膜感染模型中,6-MDC 能显著减少腹腔液和细胞中的 VRE 负荷。本文首次揭示了二苯并菲啶生物碱的潜在抗菌靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Infectious Diseases
ACS Infectious Diseases CHEMISTRY, MEDICINALINFECTIOUS DISEASES&nb-INFECTIOUS DISEASES
CiteScore
9.70
自引率
3.80%
发文量
213
期刊介绍: ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to: * Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials. * Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets. * Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance. * Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents. * Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota. * Small molecule vaccine adjuvants for infectious disease. * Viral and bacterial biochemistry and molecular biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信