Nan Mu , Tingting Bo , Yugao Hu , Ruixin Xu , Yanyu Liu , Wei Zhou
{"title":"Single-atom catalysts based on polarization switching of ferroelectric In2Se3 for N2 reduction","authors":"Nan Mu , Tingting Bo , Yugao Hu , Ruixin Xu , Yanyu Liu , Wei Zhou","doi":"10.1016/S1872-2067(24)60084-7","DOIUrl":null,"url":null,"abstract":"<div><p>The polarization switching plays a crucial role in controlling the final products in the catalytic process. The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal atoms to form active centers on ferroelectric material In<sub>2</sub>Se<sub>3</sub>. During the polarization switching process, the difference in surface electrostatic potential leads to a redistribution of electronic states. This affects the interaction strength between the adsorbed small molecules and the catalyst substrate, thereby altering the reaction barrier. In addition, the surface states must be considered to prevent the adsorption of other small molecules (such as *O, *OH, and *H). Furthermore, the V@?-In<sub>2</sub>Se<sub>3</sub> possesses excellent catalytic properties, high electrochemical and thermodynamic stability, which facilitates the catalytic process. Machine learning also helps us further explore the underlying mechanisms. The systematic investigation provides novel insights into the design and application of two-dimensional switchable ferroelectric catalysts for various chemical processes.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"63 ","pages":"Pages 244-257"},"PeriodicalIF":15.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724600847","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The polarization switching plays a crucial role in controlling the final products in the catalytic process. The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal atoms to form active centers on ferroelectric material In2Se3. During the polarization switching process, the difference in surface electrostatic potential leads to a redistribution of electronic states. This affects the interaction strength between the adsorbed small molecules and the catalyst substrate, thereby altering the reaction barrier. In addition, the surface states must be considered to prevent the adsorption of other small molecules (such as *O, *OH, and *H). Furthermore, the V@?-In2Se3 possesses excellent catalytic properties, high electrochemical and thermodynamic stability, which facilitates the catalytic process. Machine learning also helps us further explore the underlying mechanisms. The systematic investigation provides novel insights into the design and application of two-dimensional switchable ferroelectric catalysts for various chemical processes.
期刊介绍:
The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.