Algorithmic results for weak Roman domination problem in graphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Kaustav Paul, Ankit Sharma, Arti Pandey
{"title":"Algorithmic results for weak Roman domination problem in graphs","authors":"Kaustav Paul,&nbsp;Ankit Sharma,&nbsp;Arti Pandey","doi":"10.1016/j.dam.2024.08.007","DOIUrl":null,"url":null,"abstract":"<div><p>Consider a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> and a function <span><math><mrow><mi>f</mi><mo>:</mo><mi>V</mi><mo>→</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></mrow></mrow></math></span>. A vertex <span><math><mi>u</mi></math></span> with <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></math></span> is defined as <em>undefended</em> by <span><math><mi>f</mi></math></span> if it lacks adjacency to any vertex with a positive <span><math><mi>f</mi></math></span>-value. The function <span><math><mi>f</mi></math></span> is said to be a <em>weak Roman dominating function</em> (WRD function) if, for every vertex <span><math><mi>u</mi></math></span> with <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></math></span>, there exists a neighbor <span><math><mi>v</mi></math></span> of <span><math><mi>u</mi></math></span> with <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>&gt;</mo><mn>0</mn></mrow></math></span> and a new function <span><math><mrow><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>:</mo><mi>V</mi><mo>→</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></mrow></mrow></math></span> defined in the following way: <span><math><mrow><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span>, and <span><math><mrow><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>w</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>w</mi><mo>)</mo></mrow></mrow></math></span>, for all vertices <span><math><mi>w</mi></math></span> in <span><math><mrow><mi>V</mi><mo>∖</mo><mrow><mo>{</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>}</mo></mrow></mrow></math></span>; so that no vertices are undefended by <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>. The total weight of <span><math><mi>f</mi></math></span> is equal to <span><math><mrow><msub><mrow><mo>∑</mo></mrow><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span>, and is denoted as <span><math><mrow><mi>w</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow></mrow></math></span>. The <em>Weak Roman domination number</em> denoted by <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, represents <span><math><mrow><mi>m</mi><mi>i</mi><mi>n</mi><mrow><mo>{</mo><mi>w</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>|</mo><mi>f</mi><mtext>is a WRD function of</mtext><mi>G</mi><mo>}</mo></mrow></mrow></math></span>. For a given graph <span><math><mi>G</mi></math></span>, the problem of finding a WRD function of weight <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is defined as the <em>Minimum Weak Roman domination problem</em>. The problem is already known to be NP-hard for bipartite and chordal graphs. In this paper, we further study the algorithmic complexity of the problem. We prove the NP-hardness of the problem for star convex bipartite graphs and comb convex bipartite graphs, which are subclasses of bipartite graphs. In addition, we show that for the bounded degree star convex bipartite graphs, the problem is efficiently solvable. We also prove the NP-hardness of the problem for split graphs, a subclass of chordal graphs. On the positive side, we present a polynomial-time algorithm to solve the problem for <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-sparse graphs. Further, we have presented some approximation results.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"359 ","pages":"Pages 278-289"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24003597","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Consider a graph G=(V,E) and a function f:V{0,1,2}. A vertex u with f(u)=0 is defined as undefended by f if it lacks adjacency to any vertex with a positive f-value. The function f is said to be a weak Roman dominating function (WRD function) if, for every vertex u with f(u)=0, there exists a neighbor v of u with f(v)>0 and a new function f:V{0,1,2} defined in the following way: f(u)=1, f(v)=f(v)1, and f(w)=f(w), for all vertices w in V{u,v}; so that no vertices are undefended by f. The total weight of f is equal to vVf(v), and is denoted as w(f). The Weak Roman domination number denoted by γr(G), represents min{w(f)|fis a WRD function ofG}. For a given graph G, the problem of finding a WRD function of weight γr(G) is defined as the Minimum Weak Roman domination problem. The problem is already known to be NP-hard for bipartite and chordal graphs. In this paper, we further study the algorithmic complexity of the problem. We prove the NP-hardness of the problem for star convex bipartite graphs and comb convex bipartite graphs, which are subclasses of bipartite graphs. In addition, we show that for the bounded degree star convex bipartite graphs, the problem is efficiently solvable. We also prove the NP-hardness of the problem for split graphs, a subclass of chordal graphs. On the positive side, we present a polynomial-time algorithm to solve the problem for P4-sparse graphs. Further, we have presented some approximation results.

图中弱罗马支配问题的算法结果
考虑图 G=(V,E)和函数 f:V→{0,1,2}。如果 f(u)=0 的顶点 u 与任何 f 值为正的顶点都不相邻,则定义为 f 的不防御顶点。如果对于每个 f(u)=0 的顶点 u,都存在一个 f(v)>0 的邻接点 v 和一个新函数 f′,则称函数 f 为弱罗马支配函数(WRD 函数):对于 V∖{u,v} 中的所有顶点 w,f′(u)=1,f′(v)=f(v)-1,f′(w)=f(w);因此没有顶点不被 f′ 防御。f 的总权重等于∑v∈Vf(v),记为 w(f)。弱罗马支配数用 γr(G)表示,表示最小{w(f)|f 是 G 的 WRD 函数}。对于给定的图 G,寻找权重为 γr(G)的 WRD 函数的问题被定义为最小弱罗马支配数问题。众所周知,这个问题对于双向图和弦图来说是 NP 难的。本文将进一步研究该问题的算法复杂性。我们证明了星凸双artite图和梳状双artite图的 NP 难性,它们都是双artite图的子类。此外,我们还证明了对于有界度星凸双态图,该问题是有效可解的。我们还证明了分裂图(弦图的一个子类)问题的 NP 难度。从积极的一面来看,我们提出了一种多项式时间算法来解决 P4 稀疏图的问题。此外,我们还提出了一些近似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信