{"title":"Numerical Investigation on J-Shaped Straight-Bladed Darrieus Vertical Axis Wind Turbines Equipped with Gurney Flaps","authors":"Kiarash Kord, Majid Bazargan","doi":"10.1155/2024/8992210","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This study provides a numerical investigation about J-shaped straight-bladed Darrieus vertical axis wind turbines equipped with outboard, inboard, and two-sided Gurney flap (GF). The performance of the turbines is examined for different GF heights and tip speed ratios (TSRs). The aerodynamic analysis is carried out using power curves, vorticity field, and pressure field surrounding the wind turbine. The results indicate that employing the inboard GF effectively enhances the turbine’s performance by harnessing the drag force in the desired direction and postponing the flow separation up to 14° of azimuth angle. The inboard GF with a height of 0.75% chord length exhibits the best performance among the GFs, showing an increase in output power at higher TSRs up to 12.35%. Conversely, the use of outboard and two-sided GFs of any height cannot improve the turbine efficiency.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2024 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8992210","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/8992210","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study provides a numerical investigation about J-shaped straight-bladed Darrieus vertical axis wind turbines equipped with outboard, inboard, and two-sided Gurney flap (GF). The performance of the turbines is examined for different GF heights and tip speed ratios (TSRs). The aerodynamic analysis is carried out using power curves, vorticity field, and pressure field surrounding the wind turbine. The results indicate that employing the inboard GF effectively enhances the turbine’s performance by harnessing the drag force in the desired direction and postponing the flow separation up to 14° of azimuth angle. The inboard GF with a height of 0.75% chord length exhibits the best performance among the GFs, showing an increase in output power at higher TSRs up to 12.35%. Conversely, the use of outboard and two-sided GFs of any height cannot improve the turbine efficiency.
期刊介绍:
The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability.
IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents:
-Biofuels and alternatives
-Carbon capturing and storage technologies
-Clean coal technologies
-Energy conversion, conservation and management
-Energy storage
-Energy systems
-Hybrid/combined/integrated energy systems for multi-generation
-Hydrogen energy and fuel cells
-Hydrogen production technologies
-Micro- and nano-energy systems and technologies
-Nuclear energy
-Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass)
-Smart energy system