Upregulation of PECTATE LYASE5 by a NAC transcription factor promotes fruit softening in apple.

IF 6.5 1区 生物学 Q1 PLANT SCIENCES
Qiufang Su, Huijuan Yang, Xianglu Li, Yuanwen Zhong, Yifeng Feng, Hongfei Li, Muhammad Mobeen Tahir, Zhengyang Zhao
{"title":"Upregulation of PECTATE LYASE5 by a NAC transcription factor promotes fruit softening in apple.","authors":"Qiufang Su, Huijuan Yang, Xianglu Li, Yuanwen Zhong, Yifeng Feng, Hongfei Li, Muhammad Mobeen Tahir, Zhengyang Zhao","doi":"10.1093/plphys/kiae428","DOIUrl":null,"url":null,"abstract":"<p><p>Flesh firmness is a critical breeding trait that determines consumer selection, shelf life, and transportation. The genetic basis controlling firmness in apple (Malus × domestica Borkh.) remains to be fully elucidated. We aimed to decipher genetic variance for firmness at harvest and develop potential molecular markers for marker-assisted breeding. Maturity firmness for 439 F1 hybrids from a cross of \"Cripps Pink\" and \"Fuji\" was determined in 2016 and 2017. The phenotype segregated extensively, with a Gaussian distribution. In a combined bulked segregant analysis (BSA) and RNA-sequencing analysis, 84 differentially expressed genes were screened from the 10 quantitative trait loci regions. Interestingly, next-generation re-sequencing analysis revealed a Harbinger-like transposon element insertion upstream of the candidate gene PECTATE LYASE5 (MdPL5); the genotype was associated with flesh firmness at harvest. The presence of this transposon repressed MdPL5 expression and was closely linked to the extra-hard phenotype. MdPL5 was demonstrated to promote softening in apples and tomatoes. Subsequently, using the MdPL5 promoter as bait, MdNAC1-L was identified as a transcription activator that positively regulates ripening and softening in the developing fruit. We also demonstrated that MdNAC1-L could induce the up-regulation of MdPL5, MdPG1, and the ethylene-related genes MdACS1 and MdACO1. Our findings provide insight into TE-related genetic variation and the PL-mediated regulatory network for the firmness of apple fruit.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":"1887-1907"},"PeriodicalIF":6.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae428","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Flesh firmness is a critical breeding trait that determines consumer selection, shelf life, and transportation. The genetic basis controlling firmness in apple (Malus × domestica Borkh.) remains to be fully elucidated. We aimed to decipher genetic variance for firmness at harvest and develop potential molecular markers for marker-assisted breeding. Maturity firmness for 439 F1 hybrids from a cross of "Cripps Pink" and "Fuji" was determined in 2016 and 2017. The phenotype segregated extensively, with a Gaussian distribution. In a combined bulked segregant analysis (BSA) and RNA-sequencing analysis, 84 differentially expressed genes were screened from the 10 quantitative trait loci regions. Interestingly, next-generation re-sequencing analysis revealed a Harbinger-like transposon element insertion upstream of the candidate gene PECTATE LYASE5 (MdPL5); the genotype was associated with flesh firmness at harvest. The presence of this transposon repressed MdPL5 expression and was closely linked to the extra-hard phenotype. MdPL5 was demonstrated to promote softening in apples and tomatoes. Subsequently, using the MdPL5 promoter as bait, MdNAC1-L was identified as a transcription activator that positively regulates ripening and softening in the developing fruit. We also demonstrated that MdNAC1-L could induce the up-regulation of MdPL5, MdPG1, and the ethylene-related genes MdACS1 and MdACO1. Our findings provide insight into TE-related genetic variation and the PL-mediated regulatory network for the firmness of apple fruit.

NAC 转录因子上调 PECTATE LYASE5 可促进苹果果实软化。
果肉紧实度是一个关键的育种性状,它决定着消费者的选择、货架期和运输。控制苹果(Malus×domestica Borkh.)果肉紧实度的遗传基础仍有待全面阐明。我们的目标是破译收获时果实坚硬度的遗传变异,并为标记辅助育种开发潜在的分子标记。2016 年和 2017 年,我们测定了'Cripps Pink'和'Fuji'杂交的 439 个 F1 杂交种的成熟坚硬度。表型广泛分离,呈高斯分布。在结合大量分离分析(BSA)和 RNA 测序分析中,从 10 个 QTL 区域中筛选出 84 个差异表达基因。有趣的是,下一代重测序分析发现候选基因 PECTATE LYASE5(MdPL5)上游有一个类似 Harbinger 的转座子插入;该基因型与收获时的果肉紧实度有关。该转座子的存在抑制了 MdPL5 的表达,并与特硬表型密切相关。事实证明,MdPL5 能促进苹果和西红柿的软化。随后,以 MdPL5 启动子为诱饵,我们发现 MdNAC1-L 是一种转录激活子,能积极调节发育中果实的成熟和软化。我们还证明,MdNAC1-L 能诱导 MdPL5、MdPG1 以及乙烯相关基因 MdACS1 和 MdACO1 的上调。我们的研究结果有助于深入了解与 TE 相关的遗传变异以及 PL 介导的苹果果实硬度调控网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Physiology
Plant Physiology 生物-植物科学
CiteScore
12.20
自引率
5.40%
发文量
535
审稿时长
2.3 months
期刊介绍: Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research. As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信