Finemap-MiXeR: A variational Bayesian approach for genetic finemapping.

IF 4 2区 生物学 Q1 GENETICS & HEREDITY
PLoS Genetics Pub Date : 2024-08-15 eCollection Date: 2024-08-01 DOI:10.1371/journal.pgen.1011372
Bayram Cevdet Akdeniz, Oleksandr Frei, Alexey Shadrin, Dmitry Vetrov, Dmitry Kropotov, Eivind Hovig, Ole A Andreassen, Anders M Dale
{"title":"Finemap-MiXeR: A variational Bayesian approach for genetic finemapping.","authors":"Bayram Cevdet Akdeniz, Oleksandr Frei, Alexey Shadrin, Dmitry Vetrov, Dmitry Kropotov, Eivind Hovig, Ole A Andreassen, Anders M Dale","doi":"10.1371/journal.pgen.1011372","DOIUrl":null,"url":null,"abstract":"<p><p>Genome-wide association studies (GWAS) implicate broad genomic loci containing clusters of highly correlated genetic variants. Finemapping techniques can select and prioritize variants within each GWAS locus which are more likely to have a functional influence on the trait. Here, we present a novel method, Finemap-MiXeR, for finemapping causal variants from GWAS summary statistics, controlling for correlation among variants due to linkage disequilibrium. Our method is based on a variational Bayesian approach and direct optimization of the Evidence Lower Bound (ELBO) of the likelihood function derived from the MiXeR model. After obtaining the analytical expression for ELBO's gradient, we apply Adaptive Moment Estimation (ADAM) algorithm for optimization, allowing us to obtain the posterior causal probability of each variant. Using these posterior causal probabilities, we validated Finemap-MiXeR across a wide range of scenarios using both synthetic data, and real data on height from the UK Biobank. Comparison of Finemap-MiXeR with two existing methods, FINEMAP and SuSiE RSS, demonstrated similar or improved accuracy. Furthermore, our method is computationally efficient in several aspects. For example, unlike many other methods in the literature, its computational complexity does not increase with the number of true causal variants in a locus and it does not require any matrix inversion operation. The mathematical framework of Finemap-MiXeR is flexible and may also be applied to other problems including cross-trait and cross-ancestry finemapping.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 8","pages":"e1011372"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349196/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011372","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Genome-wide association studies (GWAS) implicate broad genomic loci containing clusters of highly correlated genetic variants. Finemapping techniques can select and prioritize variants within each GWAS locus which are more likely to have a functional influence on the trait. Here, we present a novel method, Finemap-MiXeR, for finemapping causal variants from GWAS summary statistics, controlling for correlation among variants due to linkage disequilibrium. Our method is based on a variational Bayesian approach and direct optimization of the Evidence Lower Bound (ELBO) of the likelihood function derived from the MiXeR model. After obtaining the analytical expression for ELBO's gradient, we apply Adaptive Moment Estimation (ADAM) algorithm for optimization, allowing us to obtain the posterior causal probability of each variant. Using these posterior causal probabilities, we validated Finemap-MiXeR across a wide range of scenarios using both synthetic data, and real data on height from the UK Biobank. Comparison of Finemap-MiXeR with two existing methods, FINEMAP and SuSiE RSS, demonstrated similar or improved accuracy. Furthermore, our method is computationally efficient in several aspects. For example, unlike many other methods in the literature, its computational complexity does not increase with the number of true causal variants in a locus and it does not require any matrix inversion operation. The mathematical framework of Finemap-MiXeR is flexible and may also be applied to other problems including cross-trait and cross-ancestry finemapping.

Finemap-MiXeR:基因精细作图的变异贝叶斯方法。
全基因组关联研究(GWAS)涉及广泛的基因组位点,其中包含高度相关的遗传变异群。精细图谱技术可以在每个全基因组关联研究基因座中选择更有可能对性状产生功能性影响的变异,并对其进行优先排序。在此,我们提出了一种新方法 Finemap-MiXeR,用于从 GWAS 摘要统计中精细绘制因果变异体,同时控制因连锁不平衡导致的变异体之间的相关性。我们的方法基于变异贝叶斯方法,并直接优化了从 MiXeR 模型导出的似然函数的证据下限(ELBO)。在得到 ELBO 梯度的分析表达式后,我们应用自适应矩估计(ADAM)算法进行优化,从而得到每个变异体的后验因果概率。利用这些后验因果概率,我们使用合成数据和来自英国生物库的真实身高数据在多种情况下对 Finemap-MiXeR 进行了验证。将 Finemap-MiXeR 与 FINEMAP 和 SuSiE RSS 这两种现有方法进行比较,结果表明两者的准确性相似或更高。此外,我们的方法在多个方面都具有计算效率。例如,与文献中的许多其他方法不同,它的计算复杂度不会随着基因座中真实因果变异的数量增加而增加,而且不需要任何矩阵反转操作。Finemap-MiXeR 的数学框架非常灵活,也可应用于其他问题,包括跨性状和跨家系精细作图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Genetics
PLoS Genetics GENETICS & HEREDITY-
自引率
2.20%
发文量
438
期刊介绍: PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill). Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信