Photo-Fenton like catalyst system with CuCOFe2O4@AC nanoparticles for ciprofloxacin removal from aqueous solutions and effluent toxicity assessment by Escherichia coli and Enterococcus faecalis bacteria
Saeid Babaei, Farokh Rokhbakhsh-Zamin, Mohammad Ahmadian, Davood Kalantar-Neyestanaki, Nadia Kazemipour
{"title":"Photo-Fenton like catalyst system with CuCOFe2O4@AC nanoparticles for ciprofloxacin removal from aqueous solutions and effluent toxicity assessment by Escherichia coli and Enterococcus faecalis bacteria","authors":"Saeid Babaei, Farokh Rokhbakhsh-Zamin, Mohammad Ahmadian, Davood Kalantar-Neyestanaki, Nadia Kazemipour","doi":"10.1007/s13201-024-02262-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the removal of the antibiotic ciprofloxacin (CIP) from aqueous solutions was investigated using the Photo-Fenton like (PFL) process and CuCOFe<sub>2</sub>O<sub>4</sub>@AC (CAC) magnetic nanoparticles as catalysts. First, CAC nanoparticles were synthesized and their characteristics were determined by XRD, VSM and FESEM, EDS, Mapping, FTIR. The removal efficiency of CIP in each of the nanomaterial processes, including UV, H<sub>2</sub>O<sub>2</sub>, CAC, UV+H<sub>2</sub>O<sub>2</sub>, CAC+H<sub>2</sub>O<sub>2</sub> (Fenton like), and UV+CAC+H<sub>2</sub>O<sub>2</sub> (PFL), were 1.0%, 7.97%, 61.37%, 6.0%, 73%, and 84%, respectively. Therefore, the PFL process was optimized as a suitable process, and the optimal conditions were determined as follows: H<sub>2</sub>O<sub>2</sub> concentration of 2500 mg/L, pH of five, CAC dose of 600 mg/L, CIP concentration of 15 mg/L, and contact time of 50 min. The removal efficiency of CIP was achieved at 95.99%. The kinetic studies on the PFL process for the removal of CIP shown that the first order kinetic model exhibits better compatibility with the obtained results compared to other investigated kinetic models. Furthermore, the synergistic effect of the PFL process was equivalent to 1.8 times the individual processes. The results of microbiological tests in treated wastewater samples and control sample indicate the non-toxicity of residual pharmaceuticals wastewater on <i>E. coli</i> and <i>E. faecalis</i> bacteria. Due to the non-toxicity of the wastewater and the ability to recover nanoparticles using magnetism, as well as the possibility of recycling the nanoparticles, this technique can be effectively used as a suitable process in pharmaceutical industry wastewater treatment.</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"14 9","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-024-02262-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-024-02262-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the removal of the antibiotic ciprofloxacin (CIP) from aqueous solutions was investigated using the Photo-Fenton like (PFL) process and CuCOFe2O4@AC (CAC) magnetic nanoparticles as catalysts. First, CAC nanoparticles were synthesized and their characteristics were determined by XRD, VSM and FESEM, EDS, Mapping, FTIR. The removal efficiency of CIP in each of the nanomaterial processes, including UV, H2O2, CAC, UV+H2O2, CAC+H2O2 (Fenton like), and UV+CAC+H2O2 (PFL), were 1.0%, 7.97%, 61.37%, 6.0%, 73%, and 84%, respectively. Therefore, the PFL process was optimized as a suitable process, and the optimal conditions were determined as follows: H2O2 concentration of 2500 mg/L, pH of five, CAC dose of 600 mg/L, CIP concentration of 15 mg/L, and contact time of 50 min. The removal efficiency of CIP was achieved at 95.99%. The kinetic studies on the PFL process for the removal of CIP shown that the first order kinetic model exhibits better compatibility with the obtained results compared to other investigated kinetic models. Furthermore, the synergistic effect of the PFL process was equivalent to 1.8 times the individual processes. The results of microbiological tests in treated wastewater samples and control sample indicate the non-toxicity of residual pharmaceuticals wastewater on E. coli and E. faecalis bacteria. Due to the non-toxicity of the wastewater and the ability to recover nanoparticles using magnetism, as well as the possibility of recycling the nanoparticles, this technique can be effectively used as a suitable process in pharmaceutical industry wastewater treatment.