Fragmentation in Gravitationally Unstable Collapsar Disks and Subsolar Neutron Star Mergers

Brian D. Metzger, Lam Hui and Matteo Cantiello
{"title":"Fragmentation in Gravitationally Unstable Collapsar Disks and Subsolar Neutron Star Mergers","authors":"Brian D. Metzger, Lam Hui and Matteo Cantiello","doi":"10.3847/2041-8213/ad6990","DOIUrl":null,"url":null,"abstract":"Although stable neutron stars (NSs) can in principle exist down to masses Mns ≈ 0.1 M⊙, standard models of stellar core-collapse predict a robust lower limit Mns ≳ 1.2 M⊙, roughly commensurate with the Chandrasekhar mass MCh of the progenitor’s iron core (electron fraction Ye ≈ 0.5). However, this limit may be circumvented in sufficiently dense neutron-rich environments (Ye < 0.5) for which is reduced to ≲1 M⊙. Such physical conditions could arise in the black hole accretion disks formed from the collapse of rapidly rotating stars (“collapsars”), as a result of gravitational instabilities and cooling-induced fragmentation, similar to models for planet formation in protostellar disks. We confirm that the conditions to form subsolar-mass NS (ssNS) may be marginally satisfied in the outer regions of massive neutrino-cooled collapsar disks. If the disk fragments into multiple ssNSs, their subsequent coalescence offers a channel for precipitating subsolar mass LIGO/Virgo gravitational-wave mergers that does not implicate primordial black holes. The model makes several additional predictions: (1) ∼Hz frequency Doppler modulation of the ssNS-merger gravitational-wave signals due to the binary’s orbital motion in the disk; (2) at least one additional gravitational-wave event (coincident within ≲hours), from the coalescence of the ssNS-merger remnant(s) with the central black hole; (3) an associated gamma-ray burst and supernova counterpart, the latter boosted in energy and enriched with r-process elements from the NS merger(s) embedded within the exploding stellar envelope (“kilonovae inside a supernova”).","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ad6990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Although stable neutron stars (NSs) can in principle exist down to masses Mns ≈ 0.1 M⊙, standard models of stellar core-collapse predict a robust lower limit Mns ≳ 1.2 M⊙, roughly commensurate with the Chandrasekhar mass MCh of the progenitor’s iron core (electron fraction Ye ≈ 0.5). However, this limit may be circumvented in sufficiently dense neutron-rich environments (Ye < 0.5) for which is reduced to ≲1 M⊙. Such physical conditions could arise in the black hole accretion disks formed from the collapse of rapidly rotating stars (“collapsars”), as a result of gravitational instabilities and cooling-induced fragmentation, similar to models for planet formation in protostellar disks. We confirm that the conditions to form subsolar-mass NS (ssNS) may be marginally satisfied in the outer regions of massive neutrino-cooled collapsar disks. If the disk fragments into multiple ssNSs, their subsequent coalescence offers a channel for precipitating subsolar mass LIGO/Virgo gravitational-wave mergers that does not implicate primordial black holes. The model makes several additional predictions: (1) ∼Hz frequency Doppler modulation of the ssNS-merger gravitational-wave signals due to the binary’s orbital motion in the disk; (2) at least one additional gravitational-wave event (coincident within ≲hours), from the coalescence of the ssNS-merger remnant(s) with the central black hole; (3) an associated gamma-ray burst and supernova counterpart, the latter boosted in energy and enriched with r-process elements from the NS merger(s) embedded within the exploding stellar envelope (“kilonovae inside a supernova”).
引力不稳定塌缩星盘和太阳系下中子星合并中的碎裂现象
虽然稳定的中子星(NSs)原则上可以存在到质量 Mns ≈ 0.1 M⊙,但恒星核心坍缩的标准模型预测了一个强大的下限 Mns ≳ 1.2 M⊙,大致与原生铁核的钱德拉塞卡质量 MCh(电子分数 Ye ≈ 0.5)相称。然而,在中子密度足够大的环境中(Ye < 0.5),这一限制可能会被规避,因为中子密度会降低到≲1 M⊙。这种物理条件可能出现在快速旋转恒星("塌缩星")塌缩形成的黑洞吸积盘中,这是引力不稳定性和冷却引起的碎裂的结果,类似于原恒星盘中行星形成的模型。我们证实,在大质量中微子冷却塌缩星盘的外部区域,形成亚太阳质量NS(ssNS)的条件可能略有满足。如果星盘碎裂成多个ssNS,它们随后的凝聚将为亚摩尔质量LIGO/Virgo引力波并合提供一个不牵涉原始黑洞的析出通道。该模型还做出了几项预测:(1) 由于双星在圆盘中的轨道运动,ssNS合并引力波信号的多普勒调制频率为∼Hz;(2) 至少有一个额外的引力波事件(在≲小时内重合),来自ssNS合并残余物与中心黑洞的凝聚;(3) 一个相关的伽马射线暴和超新星对应物,后者能量增加,并富含嵌入爆炸恒星包层中的NS合并产生的r过程元素("超新星中的千新星")。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信