Human pose estimation in complex background videos via Transformer-based multi-scale feature integration

IF 3.7 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Chen Cheng, Huahu Xu
{"title":"Human pose estimation in complex background videos via Transformer-based multi-scale feature integration","authors":"Chen Cheng,&nbsp;Huahu Xu","doi":"10.1016/j.displa.2024.102805","DOIUrl":null,"url":null,"abstract":"<div><p>Human posture estimation is still a hot research topic. Previous algorithms based on traditional machine learning have difficulties in feature extraction and low fusion efficiency. To address these problems, we proposed a Transformer-based method. We combined three techniques, namely the Transformer-based feature extraction module, the multi-scale feature fusion module, and the occlusion processing mechanism, to capture the human pose. The Transformer-based feature extraction module uses the self-attention mechanism to extract key features from the input sequence, the multi-scale feature fusion module fuses feature information of different scales to enhance the perception ability of the model, and the occlusion processing mechanism can effectively handle occlusion in the data and effectively remove background interference. Our method has shown excellent performance through verification on the standard dataset Human3.6M and the wild video dataset, achieving accurate pose prediction in both complex actions and challenging samples.</p></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"84 ","pages":"Article 102805"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938224001690","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Human posture estimation is still a hot research topic. Previous algorithms based on traditional machine learning have difficulties in feature extraction and low fusion efficiency. To address these problems, we proposed a Transformer-based method. We combined three techniques, namely the Transformer-based feature extraction module, the multi-scale feature fusion module, and the occlusion processing mechanism, to capture the human pose. The Transformer-based feature extraction module uses the self-attention mechanism to extract key features from the input sequence, the multi-scale feature fusion module fuses feature information of different scales to enhance the perception ability of the model, and the occlusion processing mechanism can effectively handle occlusion in the data and effectively remove background interference. Our method has shown excellent performance through verification on the standard dataset Human3.6M and the wild video dataset, achieving accurate pose prediction in both complex actions and challenging samples.

通过基于变换器的多尺度特征集成,在复杂背景视频中进行人体姿态估计
人体姿态估计仍是一个热门研究课题。以往基于传统机器学习的算法存在特征提取困难、融合效率低等问题。针对这些问题,我们提出了一种基于变换器的方法。我们结合了三种技术,即基于变换器的特征提取模块、多尺度特征融合模块和遮挡处理机制,来捕捉人体姿态。基于变换器的特征提取模块利用自注意机制从输入序列中提取关键特征,多尺度特征融合模块融合不同尺度的特征信息以增强模型的感知能力,而遮挡处理机制能有效处理数据中的遮挡并有效去除背景干扰。通过在标准数据集 Human3.6M 和野生视频数据集上的验证,我们的方法表现出了卓越的性能,在复杂动作和高难度样本中都能实现准确的姿势预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信