Addressing the Hubble tension in Yukawa cosmology?

IF 5 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Kimet Jusufi , Esteban González , Genly Leon
{"title":"Addressing the Hubble tension in Yukawa cosmology?","authors":"Kimet Jusufi ,&nbsp;Esteban González ,&nbsp;Genly Leon","doi":"10.1016/j.dark.2024.101584","DOIUrl":null,"url":null,"abstract":"<div><p>In Yukawa cosmology, a recent discovery revealed a relationship between baryonic matter and the dark sector. The relation is described by the parameter <span><math><mi>α</mi></math></span> and the long-range interaction parameter <span><math><mi>λ</mi></math></span> - an intrinsic property of the graviton. Applying the uncertainty relation to the graviton raises a compelling question: Is there a quantum mechanical limit to the measurement precision of the Hubble constant (<span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>)? We argue that the uncertainty relation for the graviton wavelength <span><math><mi>λ</mi></math></span> can be used to explain a running of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> with redshift. We show that the uncertainty in time has an inverse correlation with the value of the Hubble constant. That means that the measurement of the Hubble constant is intrinsically linked to length scales (redshift) and is connected to the uncertainty in time. On cosmological scales, we found that the uncertainty in time is related to the look-back time quantity. For measurements with a high redshift value, there is more uncertainty in time, which leads to a smaller value for the Hubble constant. Conversely, there is less uncertainty in time for local measurements with a smaller redshift value, resulting in a higher value for the Hubble constant. Therefore, due to the uncertainty relation, the Hubble tension is believed to arise from fundamental limitations inherent in cosmological measurements. Finally, our findings indicate that the mass of the graviton fluctuates with specific scales, suggesting a possible mass-varying mechanism for the graviton.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101584"},"PeriodicalIF":5.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686424001663","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In Yukawa cosmology, a recent discovery revealed a relationship between baryonic matter and the dark sector. The relation is described by the parameter α and the long-range interaction parameter λ - an intrinsic property of the graviton. Applying the uncertainty relation to the graviton raises a compelling question: Is there a quantum mechanical limit to the measurement precision of the Hubble constant (H0)? We argue that the uncertainty relation for the graviton wavelength λ can be used to explain a running of H0 with redshift. We show that the uncertainty in time has an inverse correlation with the value of the Hubble constant. That means that the measurement of the Hubble constant is intrinsically linked to length scales (redshift) and is connected to the uncertainty in time. On cosmological scales, we found that the uncertainty in time is related to the look-back time quantity. For measurements with a high redshift value, there is more uncertainty in time, which leads to a smaller value for the Hubble constant. Conversely, there is less uncertainty in time for local measurements with a smaller redshift value, resulting in a higher value for the Hubble constant. Therefore, due to the uncertainty relation, the Hubble tension is believed to arise from fundamental limitations inherent in cosmological measurements. Finally, our findings indicate that the mass of the graviton fluctuates with specific scales, suggesting a possible mass-varying mechanism for the graviton.

解决汤川宇宙学中的哈勃张力?
在汤川宇宙学中,最近的一项发现揭示了重子物质与暗部门之间的关系。这种关系由参数α和长程相互作用参数λ(引力子的内在属性)来描述。将不确定性关系应用于引力子会引发一个引人注目的问题:哈勃常数(H0)的测量精度是否存在量子力学限制?我们认为,引力子波长λ的不确定性关系可以用来解释哈勃常数随红移的变化。我们证明,时间的不确定性与哈勃常数的值呈反相关。这意味着哈勃常数的测量与长度尺度(红移)有内在联系,并与时间的不确定性有关。在宇宙学尺度上,我们发现时间的不确定性与回望时间量有关。对于红移值较高的测量,时间的不确定性较大,从而导致哈勃常数的值较小。相反,对于红移值较小的本地测量,时间的不确定性较小,从而导致哈勃常数的数值较大。因此,根据不确定性关系,哈勃张力被认为是宇宙学测量中固有的基本限制造成的。最后,我们的研究结果表明,引力子的质量随特定尺度波动,这表明引力子可能存在质量变化机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics of the Dark Universe
Physics of the Dark Universe ASTRONOMY & ASTROPHYSICS-
CiteScore
9.60
自引率
7.30%
发文量
118
审稿时长
61 days
期刊介绍: Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact. The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信