Beyond conjugacy for chain event graph model selection

IF 3.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Aditi Shenvi , Silvia Liverani
{"title":"Beyond conjugacy for chain event graph model selection","authors":"Aditi Shenvi ,&nbsp;Silvia Liverani","doi":"10.1016/j.ijar.2024.109252","DOIUrl":null,"url":null,"abstract":"<div><p>Chain event graphs are a family of probabilistic graphical models that generalise Bayesian networks and have been successfully applied to a wide range of domains. Unlike Bayesian networks, these models can encode context-specific conditional independencies as well as asymmetric developments within the evolution of a process. More recently, new model classes belonging to the chain event graph family have been developed for modelling time-to-event data to study the temporal dynamics of a process. However, existing Bayesian model selection algorithms for chain event graphs and its variants rely on all parameters having conjugate priors. This is unrealistic for many real-world applications. In this paper, we propose a mixture modelling approach to model selection in chain event graphs that does not rely on conjugacy. Moreover, we show that this methodology is more amenable to being robustly scaled than the existing model selection algorithms used for this family. We demonstrate our techniques on simulated datasets.</p></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"173 ","pages":"Article 109252"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0888613X24001397/pdfft?md5=c8b2ae9a09f0d95817ca9eb40586a0f1&pid=1-s2.0-S0888613X24001397-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X24001397","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Chain event graphs are a family of probabilistic graphical models that generalise Bayesian networks and have been successfully applied to a wide range of domains. Unlike Bayesian networks, these models can encode context-specific conditional independencies as well as asymmetric developments within the evolution of a process. More recently, new model classes belonging to the chain event graph family have been developed for modelling time-to-event data to study the temporal dynamics of a process. However, existing Bayesian model selection algorithms for chain event graphs and its variants rely on all parameters having conjugate priors. This is unrealistic for many real-world applications. In this paper, we propose a mixture modelling approach to model selection in chain event graphs that does not rely on conjugacy. Moreover, we show that this methodology is more amenable to being robustly scaled than the existing model selection algorithms used for this family. We demonstrate our techniques on simulated datasets.

链式事件图模型选择的共轭之外
链式事件图是概率图模型的一个系列,是贝叶斯网络的一般化,已成功应用于多个领域。与贝叶斯网络不同的是,这些模型可以编码特定上下文的条件独立性以及过程演化过程中的非对称发展。最近,人们开发了属于链式事件图系列的新模型类别,用于对时间到事件数据建模,以研究过程的时间动态。然而,链式事件图及其变体的现有贝叶斯模型选择算法依赖于所有参数的共轭先验。这对于现实世界的许多应用来说是不现实的。在本文中,我们提出了一种不依赖共轭的链式事件图模型选择混合建模方法。此外,我们还展示了这种方法比现有的用于该系列的模型选择算法更适合稳健扩展。我们在模拟数据集上演示了我们的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Approximate Reasoning
International Journal of Approximate Reasoning 工程技术-计算机:人工智能
CiteScore
6.90
自引率
12.80%
发文量
170
审稿时长
67 days
期刊介绍: The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest. Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning. Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信