A contact-based constitutive model for the numerical analysis of masonry structures using the distinct element method

IF 4.4 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Y.P. Oktiovan , F. Messali , B. Pulatsu , J.V. Lemos , J.G. Rots
{"title":"A contact-based constitutive model for the numerical analysis of masonry structures using the distinct element method","authors":"Y.P. Oktiovan ,&nbsp;F. Messali ,&nbsp;B. Pulatsu ,&nbsp;J.V. Lemos ,&nbsp;J.G. Rots","doi":"10.1016/j.compstruc.2024.107499","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a robust contact constitutive model in the distinct element method (DEM) framework for simulating the mechanical behavior of masonry structures. The model is developed within the block-based modeling strategy, where the masonry unit is modeled as deformable blocks with potential crack surfaces in the middle of the bricks, while the mortar joints are defined as zero-thickness interfaces. The modeling strategy implements multi-surface plasticity with damage mechanics, including a tension cut-off, Coulomb failure criterion, and an elliptical compressive cap for the damage in tension, shear, and compression, respectively. Two new features are introduced in this contact model: a piecewise linear softening function for strength degradation in tension and shear and a hardening/softening function to phenomenologically define the compressive damage of masonry composite into the unit-mortar interface. The constitutive model is implemented in commercial DEM software using the small displacement configuration and validated against material and experimental tests on masonry walls subjected to constant pre-compression and monotonically increasing in-plane load. The experimental and numerical results regarding the force-displacement relationship and damage pattern produced by the proposed constitutive model are compared and critically discussed, demonstrating the capability of DEM coupled with the suitable constitutive law in simulating the behavior of masonry structures.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"303 ","pages":"Article 107499"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0045794924002281/pdfft?md5=702e913655f44f4fb0c92cd3a8faf337&pid=1-s2.0-S0045794924002281-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794924002281","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a robust contact constitutive model in the distinct element method (DEM) framework for simulating the mechanical behavior of masonry structures. The model is developed within the block-based modeling strategy, where the masonry unit is modeled as deformable blocks with potential crack surfaces in the middle of the bricks, while the mortar joints are defined as zero-thickness interfaces. The modeling strategy implements multi-surface plasticity with damage mechanics, including a tension cut-off, Coulomb failure criterion, and an elliptical compressive cap for the damage in tension, shear, and compression, respectively. Two new features are introduced in this contact model: a piecewise linear softening function for strength degradation in tension and shear and a hardening/softening function to phenomenologically define the compressive damage of masonry composite into the unit-mortar interface. The constitutive model is implemented in commercial DEM software using the small displacement configuration and validated against material and experimental tests on masonry walls subjected to constant pre-compression and monotonically increasing in-plane load. The experimental and numerical results regarding the force-displacement relationship and damage pattern produced by the proposed constitutive model are compared and critically discussed, demonstrating the capability of DEM coupled with the suitable constitutive law in simulating the behavior of masonry structures.

使用独特元素法对砌体结构进行数值分析的接触式构成模型
本研究在独特元素法(DEM)框架内提出了一种稳健的接触构造模型,用于模拟砌体结构的力学行为。该模型采用基于砌块的建模策略,将砌体单元建模为可变形砌块,砌块中间为潜在裂缝面,灰浆接缝定义为零厚度界面。该建模策略通过损伤力学实现了多面塑性,包括拉伸截断、库仑失效准则和椭圆压缩帽,分别用于拉伸、剪切和压缩损伤。该接触模型引入了两个新特征:用于拉伸和剪切强度退化的片断线性软化函数,以及用于从现象学角度定义砌体复合材料在单元-剪切界面上的压缩损伤的硬化/软化函数。利用小位移配置在商用 DEM 软件中实现了该构成模型,并通过对砌体墙承受恒定预压缩和单调增加的面内荷载的材料和实验测试进行了验证。对实验结果和数值结果进行了比较和批判性讨论,这些结果涉及所提议的构成模型产生的力-位移关系和破坏模式,证明了 DEM 与合适的构成法则相结合在模拟砌体结构行为方面的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Structures
Computers & Structures 工程技术-工程:土木
CiteScore
8.80
自引率
6.40%
发文量
122
审稿时长
33 days
期刊介绍: Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信