Transcriptional and epigenetic characterization of a new in vitro platform to model the formation of human pharyngeal endoderm

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Andrea Cipriano, Alessio Colantoni, Alessandro Calicchio, Jonathan Fiorentino, Danielle Gomes, Mahdi Moqri, Alexander Parker, Sajede Rasouli, Matthew Caldwell, Francesca Briganti, Maria Grazia Roncarolo, Antonio Baldini, Katja G. Weinacht, Gian Gaetano Tartaglia, Vittorio Sebastiano
{"title":"Transcriptional and epigenetic characterization of a new in vitro platform to model the formation of human pharyngeal endoderm","authors":"Andrea Cipriano, Alessio Colantoni, Alessandro Calicchio, Jonathan Fiorentino, Danielle Gomes, Mahdi Moqri, Alexander Parker, Sajede Rasouli, Matthew Caldwell, Francesca Briganti, Maria Grazia Roncarolo, Antonio Baldini, Katja G. Weinacht, Gian Gaetano Tartaglia, Vittorio Sebastiano","doi":"10.1186/s13059-024-03354-z","DOIUrl":null,"url":null,"abstract":"The Pharyngeal Endoderm (PE) is an extremely relevant developmental tissue, serving as the progenitor for the esophagus, parathyroids, thyroids, lungs, and thymus. While several studies have highlighted the importance of PE cells, a detailed transcriptional and epigenetic characterization of this important developmental stage is still missing, especially in humans, due to technical and ethical constraints pertaining to its early formation. Here we fill this knowledge gap by developing an in vitro protocol for the derivation of PE-like cells from human Embryonic Stem Cells (hESCs) and by providing an integrated multi-omics characterization. Our PE-like cells robustly express PE markers and are transcriptionally homogenous and similar to in vivo mouse PE cells. In addition, we define their epigenetic landscape and dynamic changes in response to Retinoic Acid by combining ATAC-Seq and ChIP-Seq of histone modifications. The integration of multiple high-throughput datasets leads to the identification of new putative regulatory regions and to the inference of a Retinoic Acid-centered transcription factor network orchestrating the development of PE-like cells. By combining hESCs differentiation with computational genomics, our work reveals the epigenetic dynamics that occur during human PE differentiation, providing a solid resource and foundation for research focused on the development of PE derivatives and the modeling of their developmental defects in genetic syndromes.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"52 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03354-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Pharyngeal Endoderm (PE) is an extremely relevant developmental tissue, serving as the progenitor for the esophagus, parathyroids, thyroids, lungs, and thymus. While several studies have highlighted the importance of PE cells, a detailed transcriptional and epigenetic characterization of this important developmental stage is still missing, especially in humans, due to technical and ethical constraints pertaining to its early formation. Here we fill this knowledge gap by developing an in vitro protocol for the derivation of PE-like cells from human Embryonic Stem Cells (hESCs) and by providing an integrated multi-omics characterization. Our PE-like cells robustly express PE markers and are transcriptionally homogenous and similar to in vivo mouse PE cells. In addition, we define their epigenetic landscape and dynamic changes in response to Retinoic Acid by combining ATAC-Seq and ChIP-Seq of histone modifications. The integration of multiple high-throughput datasets leads to the identification of new putative regulatory regions and to the inference of a Retinoic Acid-centered transcription factor network orchestrating the development of PE-like cells. By combining hESCs differentiation with computational genomics, our work reveals the epigenetic dynamics that occur during human PE differentiation, providing a solid resource and foundation for research focused on the development of PE derivatives and the modeling of their developmental defects in genetic syndromes.
模拟人类咽部内胚层形成的新型体外平台的转录和表观遗传学特征
咽部内胚层(PE)是一种极其重要的发育组织,是食道、甲状旁腺、甲状腺、肺和胸腺的祖细胞。虽然一些研究强调了 PE 细胞的重要性,但由于其早期形成的技术和伦理限制,对这一重要发育阶段的详细转录和表观遗传特征描述仍然缺失,尤其是在人类中。在这里,我们开发了一种从人类胚胎干细胞(hESCs)衍生 PE 样细胞的体外方案,并提供了综合的多组学表征,从而填补了这一知识空白。我们的 PE 样细胞能强有力地表达 PE 标记,并且转录同源,与体内小鼠 PE 细胞相似。此外,我们还结合组蛋白修饰的 ATAC-Seq 和 ChIP-Seq,确定了它们的表观遗传格局以及对维甲酸反应的动态变化。通过整合多个高通量数据集,我们发现了新的假定调控区域,并推断出了一个以视黄酸为中心的转录因子网络,该网络协调着类PE细胞的发育。通过将 hESCs 分化与计算基因组学相结合,我们的工作揭示了人类 PE 分化过程中发生的表观遗传动态,为重点研究 PE 衍生物的发展及其遗传综合征发育缺陷的建模提供了坚实的资源和基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信