Luca Marzano, Adam S. Darwich, Asaf Dan, Salomon Tendler, Rolf Lewensohn, Luigi De Petris, Jayanth Raghothama, Sebastiaan Meijer
{"title":"Exploring the discrepancies between clinical trials and real-world data: A small-cell lung cancer study","authors":"Luca Marzano, Adam S. Darwich, Asaf Dan, Salomon Tendler, Rolf Lewensohn, Luigi De Petris, Jayanth Raghothama, Sebastiaan Meijer","doi":"10.1111/cts.13909","DOIUrl":null,"url":null,"abstract":"<p>The potential of real-world data to inform clinical trial design and supplement control arms has gained much interest in recent years. The most common approach relies on reproducing control arm outcomes by matching real-world patient cohorts to clinical trial baseline populations. However, recent studies pointed out that there is a lack of replicability, generalisability, and consensus. In this article, we propose a novel approach that aims to explore and examine these discrepancies by concomitantly investigating the impact of selection criteria and operations on the measurements of outcomes from the patient data. We tested the approach on a dataset consisting of small-cell lung cancer patients receiving platinum-based chemotherapy regimens from a real-world data cohort (<i>n</i> = 223) and six clinical trial control arms (<i>n</i> = 1224). The results showed that the discrepancy between real-world and clinical trial data potentially depends on differences in both patient populations and operational conditions (e.g., frequency of assessments, and censoring), for which further investigation is required. Discovering and accounting for confounders, including hidden effects of differences in operations related to the treatment process and clinical trial study protocol, would potentially allow for improved translation between clinical trials and real-world data. Continued development of the method presented here to systematically explore and account for these differences could pave the way for transferring learning across clinical studies and developing mutual translation between the real-world and clinical trials to inform clinical study design.</p>","PeriodicalId":50610,"journal":{"name":"Cts-Clinical and Translational Science","volume":"17 8","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306525/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cts-Clinical and Translational Science","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cts.13909","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The potential of real-world data to inform clinical trial design and supplement control arms has gained much interest in recent years. The most common approach relies on reproducing control arm outcomes by matching real-world patient cohorts to clinical trial baseline populations. However, recent studies pointed out that there is a lack of replicability, generalisability, and consensus. In this article, we propose a novel approach that aims to explore and examine these discrepancies by concomitantly investigating the impact of selection criteria and operations on the measurements of outcomes from the patient data. We tested the approach on a dataset consisting of small-cell lung cancer patients receiving platinum-based chemotherapy regimens from a real-world data cohort (n = 223) and six clinical trial control arms (n = 1224). The results showed that the discrepancy between real-world and clinical trial data potentially depends on differences in both patient populations and operational conditions (e.g., frequency of assessments, and censoring), for which further investigation is required. Discovering and accounting for confounders, including hidden effects of differences in operations related to the treatment process and clinical trial study protocol, would potentially allow for improved translation between clinical trials and real-world data. Continued development of the method presented here to systematically explore and account for these differences could pave the way for transferring learning across clinical studies and developing mutual translation between the real-world and clinical trials to inform clinical study design.
期刊介绍:
Clinical and Translational Science (CTS), an official journal of the American Society for Clinical Pharmacology and Therapeutics, highlights original translational medicine research that helps bridge laboratory discoveries with the diagnosis and treatment of human disease. Translational medicine is a multi-faceted discipline with a focus on translational therapeutics. In a broad sense, translational medicine bridges across the discovery, development, regulation, and utilization spectrum. Research may appear as Full Articles, Brief Reports, Commentaries, Phase Forwards (clinical trials), Reviews, or Tutorials. CTS also includes invited didactic content that covers the connections between clinical pharmacology and translational medicine. Best-in-class methodologies and best practices are also welcomed as Tutorials. These additional features provide context for research articles and facilitate understanding for a wide array of individuals interested in clinical and translational science. CTS welcomes high quality, scientifically sound, original manuscripts focused on clinical pharmacology and translational science, including animal, in vitro, in silico, and clinical studies supporting the breadth of drug discovery, development, regulation and clinical use of both traditional drugs and innovative modalities.