SYNGAP1 deficiency disrupts synaptic neoteny in xenotransplanted human cortical neurons in vivo.

IF 14.7 1区 医学 Q1 NEUROSCIENCES
Neuron Pub Date : 2024-09-25 Epub Date: 2024-08-06 DOI:10.1016/j.neuron.2024.07.007
Ben Vermaercke, Ryohei Iwata, Keimpe Wierda, Leïla Boubakar, Paula Rodriguez, Martyna Ditkowska, Vincent Bonin, Pierre Vanderhaeghen
{"title":"SYNGAP1 deficiency disrupts synaptic neoteny in xenotransplanted human cortical neurons in vivo.","authors":"Ben Vermaercke, Ryohei Iwata, Keimpe Wierda, Leïla Boubakar, Paula Rodriguez, Martyna Ditkowska, Vincent Bonin, Pierre Vanderhaeghen","doi":"10.1016/j.neuron.2024.07.007","DOIUrl":null,"url":null,"abstract":"<p><p>Human brain ontogeny is characterized by a considerably prolonged neotenic development of cortical neurons and circuits. Neoteny is thought to be essential for the acquisition of advanced cognitive functions, which are typically altered in intellectual disability (ID) and autism spectrum disorders (ASDs). Human neuronal neoteny could be disrupted in some forms of ID and/or ASDs, but this has never been tested. Here, we use xenotransplantation of human cortical neurons into the mouse brain to model SYNGAP1 haploinsufficiency, one of the most prevalent genetic causes of ID/ASDs. We find that SYNGAP1-deficient human neurons display strong acceleration of morphological and functional synaptic formation and maturation alongside disrupted synaptic plasticity. At the circuit level, SYNGAP1-haploinsufficient neurons display precocious acquisition of responsiveness to visual stimulation months ahead of time. Our findings indicate that SYNGAP1 is required cell autonomously for human neuronal neoteny, providing novel links between human-specific developmental mechanisms and ID/ASDs.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"3058-3068.e8"},"PeriodicalIF":14.7000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446607/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2024.07.007","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Human brain ontogeny is characterized by a considerably prolonged neotenic development of cortical neurons and circuits. Neoteny is thought to be essential for the acquisition of advanced cognitive functions, which are typically altered in intellectual disability (ID) and autism spectrum disorders (ASDs). Human neuronal neoteny could be disrupted in some forms of ID and/or ASDs, but this has never been tested. Here, we use xenotransplantation of human cortical neurons into the mouse brain to model SYNGAP1 haploinsufficiency, one of the most prevalent genetic causes of ID/ASDs. We find that SYNGAP1-deficient human neurons display strong acceleration of morphological and functional synaptic formation and maturation alongside disrupted synaptic plasticity. At the circuit level, SYNGAP1-haploinsufficient neurons display precocious acquisition of responsiveness to visual stimulation months ahead of time. Our findings indicate that SYNGAP1 is required cell autonomously for human neuronal neoteny, providing novel links between human-specific developmental mechanisms and ID/ASDs.

SYNGAP1 缺乏会破坏体内异种移植人皮质神经元的突触新生。
人脑本体发育的特点是大脑皮层神经元和回路的新生发育时间相当长。新神经元被认为是获得高级认知功能的必要条件,而智力障碍(ID)和自闭症谱系障碍(ASD)通常会改变这些功能。在某些形式的智力障碍和/或自闭症谱系障碍中,人类神经元的新生可能会受到破坏,但这一点从未得到过测试。在这里,我们利用将人类皮层神经元异种移植到小鼠大脑的方法来模拟SYNGAP1单倍体缺失,这是ID/ASD最常见的遗传病因之一。我们发现,SYNGAP1缺陷的人类神经元在形态和功能上的突触形成和成熟都表现出很强的加速性,同时突触可塑性也受到破坏。在电路水平上,SYNGAP1单倍体缺陷神经元会提前数月获得对视觉刺激的反应能力。我们的研究结果表明,SYNGAP1是人类神经元新生所必需的自主细胞,它在人类特异性发育机制和ID/ASD之间提供了新的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuron
Neuron 医学-神经科学
CiteScore
24.50
自引率
3.10%
发文量
382
审稿时长
1 months
期刊介绍: Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信